

REPORT TO HEALTH INFRASTRUCTURE

ON

REMEDIATION ACTION PLAN

FOR

HOSPITAL REDEVELOPMENT

AT

TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Date: 13 November 2024 Ref: E35822PRrpt4-RAP

JKEnvironments www.jkenvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Craig Ridley

Associate | Environmental Scientist

Report reviewed by:

Brendan Page

Principal | Environmental Scientist

CEnvP SC

For and on behalf of
JKE
PO BOX 976
NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E35822PRrpt4-RAP	Final Report	13 November 2024

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Executive Summary

Health Infrastructure ('the client') commissioned JK Environments (JKE) to prepare a Remediation Action Plan (RAP) for the hospital redevelopment at Temora Hospital, 169-189 Loftus Street, Temora, NSW ('the site'). The site location is shown on Figure 1 in Appendix A. The RAP has been prepared to outline the remediation process for the hospital redevelopment to support the lodgement of a Development Application (DA), with regards to Chapter 4 of State Environmental Planning Policy (Resilience and Hazards) 2021.

The Temora Hospital is classified as a Small Community Hospital with Surgery, with services currently operating as Role Delineation Level (RDL) 1-3. The hospital has 28 inpatient beds providing medical, surgical, maintenance and rehabilitation services (22 beds) and maternity (six beds). It has a small emergency department (ED), outpatient services, medical imaging (generally x-ray), community health, mental health and drug and alcohol services, allied health and aboriginal health.

JKE understand that the proposed development includes the demolition of all existing buildings and structures, and construction of a single-storey hospital building within the northern portion of the site. A loading dock area and staff parking is proposed to the north of the site, with public parking to the south-west and west of the proposed building. The southern extent of the existing driveway is proposed to be retained and incorporated into the new development. The southern portion of the site, and the areas surrounding the new building and carparks, are to be landscaped. Based on the provided drawings, bulk earthworks (cut/fill) will be required to accommodate the proposed development, with excavation to depths of approximately 2-3m below ground level (BGL) anticipated. Similar extents of filling are also anticipated. Selected schematic design drawings provided to JKE are attached in the appendices.

JKE has previously undertaken a Preliminary Site Investigation (PSI) and a Detailed Site Investigation (DSI) at the site. Previous investigations have identified bonded asbestos (asbestos containing material - ACM) in soil at one location (BH4) at a concentration that exceeded the adopted Site Assessment Criteria (SAC). Additionally, the DSI identified various data gaps due to access constraints. A summary of relevant information from these investigations is included in Section 2.

The goal of the remediation is to reduce contamination-related risks to human health and the environment, and to render the site suitable for the proposed development from a contamination viewpoint. The primary aim of the remediation is to mitigate risks from the occurrence of asbestos and other contamination in soil.

This RAP has been prepared to outline remediation of localised impacts of asbestos-contaminated fill, and the requirements for pre-remediation data gap investigation. The RAP also provides contingencies for additional remediation, should the pre-remediation investigation identify a need for additional remediation.

The proposed remediation strategy for the asbestos-impacted fill in the vicinity of BH4 includes excavation and disposal of the excavated material to a licensed landfill facility. The extent of remediation will be confirmed via the validation process. The remedial contingencies in this RAP for other contaminated areas (if identified) include 'excavation and offsite disposal' of contaminated soil, or 'cap and containment' of contaminated soil. Depending on the nature and extent of such remediation, we consider that the 'excavation and off-site disposal' option would most likely be applicable for small quantities of contaminated soils, and the 'cap and containment' option would be applicable for larger quantities of contaminated soils. Capping and containing contaminated soils on site would trigger a requirement for long-term management of the site via an Environmental Management Plan (EMP). The RAP also includes validation requirements for imported materials.

We are of the opinion that the site can be made suitable for the proposed development via the implementation of this RAP. The remediation and validation can be staged where required, to align with the development staging. A validation report is to be prepared on completion of any remediation/validation activities and submitted to the consent authority to demonstrate that the site is suitable for the proposed use following completion of remediation/validation. If contaminated material is capped on site (e.g. if the capping contingency needs to be implemented), a long-term EMP will also be prepared as part of the validation documentation.

Table of Contents

1	INTRO	DDUCTION	1
	1.1	PROPOSED DEVELOPMENT DETAILS AND BACKGROUND	1
	1.2	REMEDIATION GOALS, AIMS AND OBJECTIVES	2
	1.3	SCOPE OF WORK	2
2	SITE I	NFORMATION	3
	2.1	Previous Investigations	3
	2.2	SUMMARY OF SITE HISTORY	5
	2.3	SITE IDENTIFICATION	6
	2.4	SUMMARY OF SITE SETTING AND DESCRIPTION	6
3	SUMI	MARY OF GEOLOGY AND HYDROGEOLOGY	8
	3.1	REGIONAL GEOLOGY AND SUBSURFACE CONDITIONS	8
	3.2	ACID SULFATE SOIL (ASS) RISK AND PLANNING	9
	3.3	HYDROGEOLOGY AND SURFACE WATER BODIES	g
4	CONC	EPTUAL SITE MODEL / SITE CHARACTERISATION	10
	4.1	REVIEW OF CSM AND DATA GAP ASSESSMENT	10
	4.2	MECHANISM FOR CONTAMINATION, AFFECTED MEDIA, RECEPTORS AND EXPOSURE PATHWAYS	11
5	EXTE	NT OF REMEDIATION AND REMEDIATION OPTIONS	13
	5.1	EXTENT OF REMEDIATION	13
	5.2	SOIL REMEDIATION OPTIONS ASSESSMENT	13
	5.3	RATIONALE FOR THE PREFERRED OPTION FOR REMEDIATION	15
6	REME	DIATION DETAILS	17
	6.1	ROLES AND RESPONSIBILITIES	17
	6.2	PRE-COMMENCEMENT MEETING	18
	6.3	Pre-remediation (Data Gap) Investigation and Reporting	18
	6.4	SITE ESTABLISHMENT AND DEMOLITION	20
	6.5	REMEDIAL ACTIONS – REMEDIATION OF ASBESTOS CONTAMINATED FILL AT BH4	21
	6.6	REMEDIAL ACTIONS – EXCAVATE AND DISPOSE CONTINGENCY	23
	6.7	REMEDIAL ACTIONS - CAPPING CONTINGENCY	24
	6.8	REMEDIATION DOCUMENTATION	26
7	VALIE	DATION PLAN	29
	7.1	Validation Sampling and Documentation	29
	7.2	Validation Assessment Criteria and Data Assessment	34
	7.3	Validation Sampling, Analysis and Quality Plan (SAQP)	35
	7.4	Validation Report	38
8	CONT	INGENCY PLAN	39
	8.1	UNEXPECTED FINDS	39

	8.2	VALIDATION FAILURE FOR EXCAVATE AND DISPOSE	39
	8.3	IMPORTATION FAILURE FOR VENM OR OTHER IMPORTED MATERIALS	39
	8.4	REMEDIATION STRATEGY CHANGES	39
9	SITE M	ANAGEMENT PLAN FOR REMEDIATION WORKS	40
	9.1	ASBESTOS MANAGEMENT PLAN	40
	9.2	Interim Site Management	40
	9.3	PROJECT CONTACTS	40
	9.4	SECURITY	41
	9.5	TIMING AND SEQUENCING OF REMEDIATION WORKS	41
	9.6	SITE SOIL AND WATER MANAGEMENT PLAN	41
	9.7	NOISE AND VIBRATION CONTROL PLAN	41
	9.8	DUST CONTROL PLAN	42
	9.9	Dewatering	42
	9.10	Air Monitoring	43
	9.11	ODOUR CONTROL PLAN	43
	9.12	WHS PLAN	44
	9.13	WASTE MANAGEMENT	44
	9.14	INCIDENT MANAGEMENT CONTINGENCY	44
	9.15	HOURS OF OPERATION	44
	9.16	COMMUNITY CONSULTATION AND COMPLAINTS	44
10	CONCL	USIONS	45
	10.1	REMEDIATION CATEGORY	45
	10.2	REGULATORY REQUIREMENTS	46
11	LIMITA	TIONS	47

List of Tables

Table 2-1: Summary of Previous Investigations and Relevant Findings	3
Table 2-2: Summary of Historical Land Uses / Activities	5
Table 2-3: Site Identification	6
Table 3-1: Summary of Subsurface Conditions – PSI & DSI	8
Table 4-1: Review of CSM and Data Gap Assessment	10
Table 4-2: CSM for RAP	11
Table 5-1: Consideration of Soil Remediation Options	14
Table 6-1: Roles and Responsibilities	17
Table 6-2: Remediation Details – Excavate and Dispose Contaminated Fill – Asbestos impacted	21
Table 6-3: Remediation Details – Excavate and Dispose Contaminated Soil – Non-Asbestos Impacted	24
Table 6-4: Remediation Details – Capping Contingency	25
Table 7-1: Validation Requirements – Asbestos Impacted Fill	29
Table 7-2: Validation Requirements – Non-Asbestos Impacted Soil	30
Table 7-3: Validation Requirements – Capping	31
Table 7-4: Validation Requirements – Imported Materials	31
Table 7-5: Validation Assessment Criteria (VAC)	34
Table 9-1: Project Contacts	40
Table 10-1: Regulatory Requirement	46

Attachments

Appendix A:	Report Figures
-------------	----------------

Appendix B: Selected Development Plans

Appendix C: Laboratory Summary Tables and Logs

Appendix D: Example Imported Materials and Waste Tracking Registers

Appendix E: Report Explanatory Notes

Appendix F: Unexpected Finds Protocol

Appendix G: Guidelines and Reference Documents

Abbreviations

Asphaltic Concrete	AC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Areas of Environmental Concern	AEC
Asbestos Fines/Fibrous Asbestos	AF/FA
Australian Height Datum	AHD
Asbestos Management Plan	AMP
Asbestos Removal Control Plan	ARCP
Below Ground Level	BGL
Benzene, Toluene, Ethylbenzene, Xylene	BTEX
Contaminated Land Management	CLM
Contaminant(s) of Potential Concern	CoPC
Chain of Custody	COC
Conceptual Site Model	CSM
Development Application	DA
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Emergency Department	ED
Ecological Investigation Level	EIL
Environmental Management Plan	EMP
Excavated Natural Material	ENM
Environmental Risk Sciences	EnRiskS
Environment Protection Authority	EPA
Environment Protection Licence	EPL
Ecological Screening Level	ESL
Fibre Cement Fragment(s)	FCF
Human Health and Ecological Risk Assessment	HHERA
Health Investigation Level	HIL
Health Screening Level	HSL
JK Environments	JKE
Licensed Asbestos Assessor	LAA
Lab Control Spike	LCS
Map Grid of Australia	MGA
National Association of Testing Authorities	NATA
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	ОСР
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	PAH
Polychlorinated Biphenyls	PCB
Photo-ionisation Detector	PID
Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL
Quality Assurance	QA OC
Quality Control Remediation Action Plan	QC RAP
Role Delineation Level	RDL
	RPD
Relative Percentage Difference Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
State Environmental Planning Policy	SEPP
Total Recoverable Hydrocarbons	TRH
Validation Assessment Criteria	VAC
vanuation Assessinent Criteria	VAC

Virgin Excavated Natural Material

Work Health and Safety

WHS

Units

L Litres Metres BGL mBGL Metres m ml or mL Millilitres Milligrams per Kilogram mg/kg Milligrams per Litre mg/L Parts Per Million ppm Percentage % Percentage weight for weight %w/w

1 INTRODUCTION

Health Infrastructure ('the client') commissioned JK Environments (JKE) to prepare a Remediation Action Plan (RAP) for the Hospital redevelopment at Temora Hospital, 169-189 Loftus Street, Temora, NSW ('the site'). The site location is shown on Figure 1 in Appendix A.

The RAP has been prepared to outline the remediation process for the hospital redevelopment to support the lodgement of a Development Application (DA), with regards to Chapter 4 of State Environmental Planning Policy (Resilience and Hazards) 2021¹.

JKE has previously undertaken a Preliminary Site Investigation (PSI) and a Detailed Site Investigation (DSI) at the site. The investigations identified fill soils impacted by lead, total recoverable hydrocarbons (TRH) and carcinogenic polycyclic aromatic hydrocarbons (PAHs), and the presence of asbestos in soils. Data gaps also exist due to access constraints associated with the existing buildings. A summary of relevant information from these investigations is included in Section 2 and data gaps are to be addressed under the framework of this RAP.

1.1 Proposed Development Details and Background

The Temora Hospital is classified as a Small Community Hospital with Surgery, with services currently operating as Role Delineation Level (RDL) 1-3. The hospital has 28 inpatient beds providing medical, surgical, maintenance and rehabilitation services (22 beds) and maternity (six beds). It has a small emergency department (ED), outpatient services, medical imaging (generally x-ray), community health, mental health and drug and alcohol services, allied health and aboriginal health.

JKE understand that the proposed development includes the demolition of all existing buildings and structures, and construction of a single-storey hospital building within the northern portion of the site. A loading dock area and staff parking is proposed to the north of the site, with public parking to the south-west and west of the proposed building. The southern extent of the existing driveway is proposed to be retained and incorporated into the new development. The southern portion of the site, and the areas surrounding the new building and carparks, are to be landscaped.

Based on the provided drawings, bulk earthworks (cut/fill) will be required to accommodate the proposed development, with excavation to depths of approximately 2-3m below ground level (BGL) anticipated. Similar extents of filling are also anticipated.

Selected schematic design drawings provided to JKE are attached in the appendices.

¹ State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as SEPP Resilience and Hazards 2021)

1.2 Remediation Goals, Aims and Objectives

The goal of the remediation is to reduce contamination-related risks to human health and the environment, and to render the site suitable for the proposed development from a contamination viewpoint. The primary aim of the remediation is to mitigate risks from the occurrence of asbestos or other contamination in soil.

The objectives of this RAP are to:

- Document the requirements for pre-remediation (data gap) investigation;
- Provide a rationale to support the extent of the proposed remediation and the remedial/site validation approach based on the current dataset;
- Document a methodology that is to be implemented to remediate and validate the site; and
- Document a strategy that can be implemented in the event of uncovering any unexpected, contamination-related finds, and provide other relevant contingency plans.

1.3 Scope of Work

The RAP was prepared generally in accordance with a JKE proposal (Ref: EP58924PR) of 28 June 2023, the agreed consultancy agreement (HI22656) and written acceptance from the client of the variation dated 2 August 2023. The scope of work included a review of the previous JKE reports, review of the available proposed development details, consultation with the client and their nominated project manager, and preparation of a RAP.

The scope of work was undertaken with reference to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)², Consultants Reporting on Contaminated Land (2020)³ guidelines, other guidelines made under or with regards to the Contaminated Land Management Act (1997)⁴ and SEPP Resilience and Hazards 2021. A list of reference documents/guidelines is included in Appendix G.

⁴ Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)

² National Environment Protection Council (NEPC), (2013). *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).* (referred to as NEPM 2013)

³ NSW EPA, (2020). Consultants reporting on contaminated land, Contaminated Land Guidelines. (referred to as Consultants Reporting Guidelines)

2 SITE INFORMATION

Previous Investigations 2.1

JKE has undertaken several phases of investigation on the site. Environmental Risk Sciences (EnRiskS) has also prepared a Human Health and Ecological Risk Assessment (HHERA) for the proposed development. Relevant information from these investigations is summarised in the table below.

Table 2-1: Summary of Previous Investigations and Relevant Findings		
Investigation phase	Relevant findings to the site	
PSI, JKE 2023 ⁵	JKE previously prepared a PSI for the proposed hospital redevelopment at the site in 2023. The scope of work included a desktop review of historical information, a site walkover inspection, and soil sampling from 12 locations (BH1 to BH8 inclusive, and TP13 to TP16 inclusive) as shown on the figures attached in the appendices. The site history indicated that the site was historically used for residential and agricultural (grazing) purposes until the late 1930's, and has been used for a hospital since.	
	The PSI identified the following potential contamination sources/areas of environmental concern (AEC): Historic filling activities; Historic agricultural activities;	
	 Use of pesticides; Hazardous building materials present within existing and/or former structures; On-site generator and associated fuel storage; Maintenance workshop; and 	
	On-site incinerator and hospital activities.	
	The investigation identified fill soils impacted by asbestos and PAHs at concentrations that were above the adopted human health-based site assessment criteria (SAC). Elevated copper concentrations above the ecological SAC were also identified in the majority of the analysed fill, natural soil and rock samples though were considered to be representative of the regional conditions. Fibre cement fragments (FCF)/asbestos containing material (ACM) was observed in surficial fill in BH4. The concentration of asbestos at this location exceeded the Health Screening Level (HSL) SAC.	
	JKE concluded that the site could be made suitable for the proposed development via remediation and the following was recommended to better assess the risks associated with potential site contamination: A surface walkover and 'emu picking' of all visible FCF/ACM from the site surface should	
	 be undertaken and an asbestos clearance certificate obtained from a SafeWork NSW licensed asbestos assessor (LAA); Interim management of the site was to occur under an asbestos management plan (AMP), until remediation occurs; 	
	 The earthworks and any re-use of material was to adequately consider the presence of copper in the soil in relation to waste classification and potential ecological risks; Undertake a DSI to better assess the risks associated with the potential sources of contamination and inform preparation of a RAP; 	
	 A RAP was to be prepared to address the contamination issues identified at the site; and The site was to be managed, remediated and validated in accordance with the RAP and AMP. 	

⁵ JKE, (2023a). Report to Health Infrastructure on Preliminary (Stage 1) Site Investigation for Proposed Alterations and Additions at Temora Hospital, 169-189 Loftus Street, Temora, NSW. (Ref: E35822PRrpt, dated 8 June 2024) (referred to as PSI)

Investigation phase	Relevant findings to the site
DSI, JKE 2024 ⁶	The DSI included a review of existing project information, a site inspection and soil sampling from 63 locations. The DSI was revised in 2024 to account for minor updates to the development details.
	The investigation identified fill and/or clay soils to depths of approximately 0.1m to 1.2mBGL, underlain by andesite bedrock. The maximum depth of fill encountered during the DSI was 0.9m. Fill was encountered to a maximum depth of 1.1m during the PSI. Groundwater was not encountered during the investigation. The fill typically comprised of silty clay with inclusions of ash, slag, gravel, cobbles, boulders, volcanic breccia, building rubble (concrete, asphaltic concrete [AC], ceramic, metal, plastic and glass fragments), roots and root fibres.
	The DSI identified fill soils impacted by lead, TRHs and PAHs at concentrations that were above the nominated SAC. A subsurface asbestos pipe was identified at TP153 during the DSI. Elevated copper concentrations above the SAC were also identified in several of the analysed fill, natural soil and rock samples though were considered to be representative of the regional conditions.
	Based on the findings of the investigation, JKE was of the opinion that the site could be made suitable for the proposed development via remediation. JKE recommended that a site-specific HHERA be undertaken by a specialist consultant. The SAC adopted for the PSI and DSI were considered to be relatively conservative for a hospital land use scenario, and the DSI stated that further consideration of the specific proposed development details may enable site specific criteria to be developed or alternative Tier 1 criteria to be adopted. We indicated that this has the potential to substantially reduce the scope of remediation, or potentially eliminate the need for remediation altogether.
	 Additionally, the following was recommended: Prepare/update an AMP to outline the management strategy for addressing the potential risks posed by asbestos. This should be prepared by an LAA; Following the HHERA, evaluate the need for any additional data collection, reassess the data gaps of the DSI, and (where required) prepare the RAP; and The earthworks and any re-use of material is to adequately consider the copper in the soil in relation to waste classification and potential ecological risks.
HHERA, EnRiskS 2024 ⁷	EnRiskS prepared a HHERA for the proposed development. The objective of the HHERA was to determine whether the soil impacts identified in the JKE PSI and DSI posed an unacceptable risk to human health or ecosystems at the site.
	The HHERA identified the following groups of people as being potentially present at the site: Construction workers during the redevelopment; Intrusive maintenance workers following the redevelopment; Site gardeners and landscapers;
	 Hospital staff during and after the redevelopment; Patients and visitors (including volunteers) who may walk in the hospital grounds during and after the redevelopment; and The local community (including residents of the adjacent residential care facility) who may walk through the hospital grounds during and after the redevelopment.
	The HHERA identified the relevant exposure pathways for human receptors to be direct exposure to soils, and exposure to vapours (for relevant volatile chemicals). The HHERA also assessed the potential ecological risks for terrestrial organisms.

⁶ JKE, (2023b). Report to Health Infrastructure on Detailed Site Investigation for Proposed Hospital Redevelopment at Temora Hospital, 169-189 Loftus Street, Temora, NSW. (Ref: E35822PRrpt3Rev1, dated 9 May 2024).

⁷ EnRiskS, (2024). *Temora Hospital redevelopment: Human health and ecological risk assessment. Prepared for Capital Insight and NSW Health Infrastructure.* (Ref: HI/24/TEMR001, Revision B Final, dated 17 October 2024) (referred to as HHERA)

Investigation phase	Relevant findings to the site
	Based on the available data for the site, and the site-specific risk assessment process, EnRiskS concluded: The human health risks were low and acceptable for all groups listed above; Ecological risks were low and acceptable; and Risk management actions and a RAP were not warranted for the site. We note that the HHERA did not consider asbestos, as this was to be managed separately. Therefore, the conclusions of the HHERA do not apply to asbestos, and management and remediation of asbestos at BH4 is required.

A copy of the soil laboratory data summary tables and boreholes logs from the previous investigations, is attached in Appendix C. SAC exceedances from the PSI and DSI are shown on Figures 3 and 4 in Appendix A.

JKE note that the HHERA concluded that risk management and a RAP were not required for the site, in relation to heavy metals, TRH and PAHs in soil. This RAP has been prepared to provide the framework for the data gap investigation, remediation of the known localised asbestos impacts at BH4, and remediation approaches as a contingency in the event that soil contamination that poses a potentially unacceptable risk to receptors is identified through the data gap investigation process.

2.2 Summary of Site History

A time line summary of the historical land uses and activities is presented in the table below. The information presented in the table is based on a weight of evidence assessment of the site history documentation and observations made by JKE during the previous investigations.

Table 2-2: Summary of Historical Land Uses / Activities

Year(s)	On-site - Potential Land Use / Activities	Off-site - Potential Land Use / Activities
Prior to 1938	Residential and possibly agricultural (grazing).	Residential and agricultural (grazing).
1930 – 1940	Temora Hospital was constructed.	Residential and agricultural (grazing).
1940 - present	Hospital and associated activities.	Residential and agricultural (grazing).
		2010s: Vocational education centre (TAFE) was constructed to the north of the site.

2.3 Site Identification

Table 2-3: Site Identification

Current Site Owner	Health Administration Corporation
(certificate of title):	
Site Address:	169-189 Loftus Street, Temora, NSW
Lot & Deposited Plan:	Lot 2 DP 582392
Current Land Use:	Hospital
Proposed Land Use:	Hospital
Local Government Area:	Temora Shire Council
Current Zoning:	SP2: Infrastructure
Site Area (m²) (approx.):	31,770
Geographical Location	Latitude: -34.44276
(decimal degrees) (approx.):	Longitude: 147.5434
Site Plans:	Appendix A

2.4 Summary of Site Setting and Description

The site is located in a predominantly residential and rural area of Temora and is bound by Loftus Street to the south and Gloucester Street to the west. The site is located approximately 4km to the south-east of Lake Centenary (a man-made lake across Trigalong Creek). The regional topography is characterised by gently undulating terrain. The site is located towards the crest of a gently undulating slope which grades down towards the south-west at approximately 5°. Parts of the site appear to have been levelled to account for the slope and accommodation the existing development.

A walkover inspection of the site was undertaken by JKE on 2 May 2023 for the PSI. The walkover inspections during the course of the DSI confirmed that the site remained generally unchanged since the PSI. The site was not re-inspected at the time of preparing this RAP. A summary of the key observations is provided below:

- At the time of the inspection, the majority of the site was utilised as a hospital with associated accommodation and maintenance areas;
- The buildings were mostly located within the northern and central portions of the site and appeared to generally be in good condition based on a cursory inspection. The buildings included:
 - o A three-storey main hospital building of brick and fibre-cement construction;
 - o A two-storey nurses' accommodation building of brick and metal construction; and
 - Several single-storey buildings (ancillary services, maintenance, workshop) typically of brick and metal construction;
- An AC paved driveway provided vehicular access to the site from Loftus Street in the south-west of the site, and extended to the north-east to and around the main hospital building, connecting with another AC paved driveway providing vehicular egress from the site to Gloucester Street in the north-west of

the site. Several on-grade carparks and concrete pathways were observed across the site. The pavement conditions varied from moderate to poor condition based on a cursory inspection, with several cracks, potholes and repaired patches observed;

- Fuels, oils and lubricants were typically stored within the maintenance building. The products were stored in appropriate containers;
- An incinerator was located within the boiler room in the north-west of the site;
- Medium to large trees were observed along the site boundaries. Smaller shrubs and trees were located within the courtyard to the north and south of the main building as well as in other formed gardens across the site. The vegetation appeared to be generally healthy based on a cursory inspection; and
- Sensitive environments such as wetlands, ponds, creeks or extensive areas of native vegetation were not observed on site or in the immediate surrounds.

During the site inspection, JKE observed the following land uses in the immediate surrounds:

- North Low-density residential, the Temora campus of TAFE NSW and residential care facility (Whiddon Group);
- South Loftus Street with low-density residential beyond;
- East Utilities infrastructure (transmission tower, substation, pumping station and reservoirs) with vacant agricultural land (possibly grazing) beyond; and
- West Residential care facility (Whiddon Group) with Gloucester Street beyond.

3 SUMMARY OF GEOLOGY AND HYDROGEOLOGY

3.1 Regional Geology and Subsurface Conditions

Regional geological information reviewed for the PSI indicated that the site is underlain by Temora Volcanics comprising andesite, trachyandesite, latite and basaltic andesite, though may be obscured by quaternary aged alluvial soils. The alluvial soils are likely present on the lower slopes and toe of the hillside, and not within the site boundaries.

A summary of the subsurface conditions encountered during the previous investigations is presented in the following table:

Table 3-1: Summary of Subsurface Conditions - PSI & DSI

Profile	Description
Pavement	AC pavement was encountered at the surface in BH7, BH8, BH126, BH155, BH157, BH158 and BH162. The pavement ranged in thickness from approximately 20mm to 50mm.
Fill	Fill was encountered at the surface or directly beneath the pavement in the majority of boreholes and test pits, and extended to depths of approximately 0.05m to 1.1mBGL. Fill depths are presented on Figure 4 attached in Appendix A. TP105, TP109, TP148 and TP156 were terminated in the fill at maximum depths ranging from approximately 0.35m to 0.5mBGL, due to obstructions (i.e. underground services).
	The fill typically comprised of silty and/or sandy clay and silty sand, with inclusions of ash, slag, gravel, cobbles, boulders, volcanic breccia, building rubble (concrete, AC, ceramic, metal, plastic and glass fragments), roots and root fibres.
	No stained or odorous fill was encountered. FCF/ACM were encountered in the surficial fill material (0-0.2m) in BH4, and a suspected asbestos cement pipe was encountered in TP153 at a depth of approximately 0.3mBGL (see Figures 3 and 4 in Appendix A). The FCF/ACM in BH4 (BH4-FCF1 and BH4-FCF2), and a sample of the pipe (FCF101) were collected and submitted for laboratory analysis. The laboratory analysis confirmed the presence of asbestos in all three samples.
Natural Soil	Residual silty clay and sandy silty clay was encountered at the surface in BH1, BH5, BH9 to BH12, TP16, TP110 and TP123, and generally beneath the fill in the majority of the sampling locations. The residual soils were observed to include traces of sand and igneous, ironstone, quartz and andesite gravel and cobbles.
	No stained or odorous soils were encountered during the investigation.
Bedrock	Andesite bedrock was encountered beneath the fill in BH7, TP124, TP131, TP132, TP152, BH158 and TP159 at depths of approximately 0.1m to 0.5mBGL. Andesite bedrock was encountered beneath the residual clays in numerous locations at depths of approximately 0.4m to 2.1mBGL. The bedrock was typically extremely weathered on first contact.
Groundwater	Groundwater seepage was not encountered during drilling and test pitting. All boreholes and test pits remained dry on completion of and a short time after drilling and excavation.

A copy of the borehole logs from the PSI and DSI is included in Appendix C.

3.2 Acid Sulfate Soil (ASS) Risk and Planning

ASS information reviewed for the PSI indicated that the site is not located in an ASS risk area.

3.3 Hydrogeology and Surface Water Bodies

Hydrogeological information presented in the PSI indicated that:

- The subsurface conditions at the site consist of relatively low permeability (residual) soils overlying shallow bedrock. The potential for viable groundwater abstraction and use of groundwater under these conditions is considered to be low. There is a reticulated water supply in the area and consumption of groundwater is not expected to occur;
- There nearest registered bore was located 330m to the west of the site and was registered for recreational purposes;
- Considering the local topography and surrounding land features, JKE anticipate groundwater flow towards the north-west.

Surface water bodies were not identified in the immediate vicinity of the site. The closest surface water body is an unnamed dam approximately 320m to the north-east of the site. This is up-gradient and is not considered to be a potential receptor.

4 CONCEPTUAL SITE MODEL / SITE CHARACTERISATION

NEPM (2013) defines a Conceptual Site Model (CSM) as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information and investigation data to date. Reference should also be made to the figures attached in the appendices.

4.1 Review of CSM and Data Gap Assessment

Table 4-1: Review of CSM and Data Gap Assessment

Source/AEC	Review of CSM and Data Gap Assessment
Fill material	Fill ranging in depth between approximately 0.05m to 1.1mBGL was encountered across the site. The fill contained anthropogenic inclusions such as AC, concrete, ceramic, metal, plastic and glass fragments.
	Further investigation of the fill will be required following demolition of the buildings/structures. However, in our opinion, we consider it is likely that the fill conditions beneath the buildings will be broadly consistent with those encountered in the previous boreholes and test pits.
	Asbestos (as bonded ACM) is a contaminant of concern in fill. The following contaminants of potential concern (CoPC) also apply to fill in areas where data gaps remain due to access limitations: heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); TRH; benzene, toluene, ethylbenzene and xylene (BTEX); PAHs; organochlorine pesticides (OCPs); organophosphate pesticides (OPPs); and polychlorinated biphenyls (PCBs); and asbestos.
Use of Pesticides	Pesticides have not been detected to date. However, sampling has not occurred in the building footprints and further sampling/analysis of soils in these areas will be required.
	CoPC include: Heavy metals (primarily arsenic, lead and cadmium); OCPs; and OPPs.
Hazardous Building Materials	Previous identification of asbestos (as bonded ACM) in surficial fill soils in the vicinity of BH4 and inclusions in fill soils were indicative of former demolition/construction activities (i.e. concrete and ceramic fragments).
	The buildings and structures on the site are of an age indicative of housing hazardous building materials, and such materials were identified by others as summarised within the PSI report.
	Further investigation of the fill beneath the buildings/structures will be required to assess the full extent of contamination risks on site as noted above. CoPC include asbestos/ACM; lead; and PCBs.
Maintenance workshop	A maintenance workshop is located within the site. It is possible that leaks/spills and or releases of oils, solvents and fluids (e.g. turpentine/mineral spirits associated with typical painting activities) may have occurred. Based on the existing data, any leaks/spills are considered likely to be localised in extent. Due to access constraints, investigation has not been undertaken in the immediate vicinity of the maintenance workshop and further investigation will be required once access is available.
	CoPC include: heavy metals; TRHs; and PAHs.

The RAP includes provisions for a pre-remediation (data gap) investigation which is to occur after demolition. The outcome of these data gap investigation works will be used to reassess, and where required, identify the need for any further remediation. Notwithstanding, the remedial/management actions proposed in this RAP focus on the following:

- Localised excavation of surficial fill in the vicinity of BH4 to remove the soil impacted by ACM at a concentration that exceeded the HSL; and
- Management of potential asbestos risks during construction based on the potential occurrence of additional asbestos in/on soil elsewhere on site (additional asbestos remediation may also be required depending on the outcome of the additional investigation).

Based on the available data, we consider it possible that further occurrences of asbestos will be identified and the RAP includes contingencies to address this. However, at this stage the RAP has been prepared on the basis that fill containing asbestos concentrations in exceedance of the HSLs is localised in the vicinity of BH4. The RAP does not propose any removal of the asbestos pipe and this pipe will need to be managed if any works occur in the area or if the pipe is found to extend elsewhere.

In addition to the asbestos finds, the previous investigations identified lead, TRH and carcinogenic PAH exceedances of the health-based SAC, and copper and TRH exceedances of the ecological-based SAC. The copper exceedances were in the majority of fill, natural soil and rock samples and JKE considered these concentrations to be representative of the regional conditions.

The HHERA reviewed the exceedances and prepared adjusted SAC based on alternative assumptions relating to exposure risks and use of the site. The HHERA concluded that the concentrations of metals, TRHs and carcinogenic PAHs recorded in the soils did not pose an unacceptable risk to human health or ecological receptors. On this basis, remediation is not proposed for these contaminants.

4.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to remediation are outlined in the following CSM table:

Table 4-2: CSM for RAP

Potential mechanism for contamination	The mechanisms for contamination include 'top-down' impacts and spills.
	To date, contamination impacts from asbestos have been limited to surficial fill soils in one location (BH4).
Affected media	Soil has been identified as affected medium in the context of the RAP. Asbestos fibres can also mobilise to air.
	Groundwater is not being considered further in the context of the RAP. However, this will need to be reassessed in the event that significant contamination (i.e. high concentrations of mobile contaminants) is found in soil during the preremediation (data gap) investigation.
Receptor identification	Human receptors include:
	 Construction workers and intrusive maintenance workers;
	Site gardeners and landscapers;

	 Hospital staff, patients (adults and children) and visitors (including volunteer workers and children); and The local community who may use the hospital grounds. Ecological receptors include terrestrial organisms and plants within unpaved areas (including any proposed landscaped areas).
Potential exposure pathways and mechanisms	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust, asbestos fibres and vapours. The potential for exposure would typically be associated with the construction and excavation works, and future use of the site. Potential exposure pathways for ecological receptors include primary contact and ingestion.
	Exposure during future site use could occur via direct contact with soil in unpaved areas such as gardens/open space, inhalation of airborne asbestos fibres during soil disturbance, or inhalation of vapours within enclosed spaces such as buildings.
	 The following have been identified as potential exposure mechanisms in the context of the RAP: Contact (dermal, ingestion or inhalation) with soils during construction or with exposed soils in landscaped areas and/or unpaved areas; and Vapour intrusion and inhalation of vapours within the proposed buildings.
Presence of preferential pathways for contaminant movement	None identified. To be reviewed in the event mobile contamination impacts are encountered during the pre-remediation (data gap) investigation.

5 EXTENT OF REMEDIATION AND REMEDIATION OPTIONS

5.1 Extent of Remediation

As the RAP includes provisions for managing unexpected finds and completing further investigation, the RAP applies to the whole site and all proposed development works.

Based on the current dataset, the asbestos remediation area has been confined to a nominal 20m x 20m (400m²) area approximately centred on BH4, as shown on Figure 6 in Appendix A. Additional testing may be undertaken as part of the pre-remediation (data gap) investigation process, using a step-out approach (say, starting at 10m x 10m grid centred on BH4) to refine the expected lateral extent of remediation. The vertical extent of remediation will extend to the depth of fill in this area, which is expected to be in the order of 0.2m deep. The final extent of remediation will ultimately be guided by the validation process.

A review of the remediation extent and the need for any additional remedial actions is to occur as part of the pre-remediation (data gap) investigation process. The RAP includes a suitable contingency remedial actions framework to address any additional risks that may be identified in this context.

5.2 Soil Remediation Options Assessment

The NSW EPA follows the hierarchy set out in NEPM 2013 for the remediation of contaminated sites. The preferred order for soil remediation and management is as follows:

- 1. On-site treatment of soil so that the contaminant is either destroyed or the associated hazard is reduced to an acceptable level;
- 2. Off-site treatment of excavated material so that the contaminant is either destroyed or the associated hazard is reduced to an acceptable level, after which the soil is returned to the site;

Or if the above are not practicable:

- 3. Consolidation and isolation of the soil by on-site containment within a properly designed barrier; and
- 4. Removal of contaminated material to an approved site or facility, followed where necessary by replacement with clean material; or
- 5. Where the assessment indicates that remediation would have no net environmental benefit or would have a net adverse environmental effect, implementation of an appropriate management strategy.

For simplicity herein, the above hierarchy are respectively referred to as Option 1, Option 2, Option 3 etc.

The NEPM 2013 and the associated Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2021)⁸ prefer the following asbestos remediation hierarchy:

- 1. Minimisation of public risk;
- 2. Minimisation of contaminated soil disturbance; and
- 3. Minimisation of contaminated material/soil moved to landfill.

⁸ Western Australian (WA) Department of Health (DoH), (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. (referred to as WA DoH 2021)

The NSW EPA Contaminated Land Management Guidelines for the NSW Site Auditor Scheme (3rd Edition) (2017)⁹ provides the following additional requirements to be taken into consideration:

- Remediation should not proceed in the event that it is likely to cause a greater adverse effect than leaving the site undisturbed; and
- Where there are large quantities of soil with low levels of contamination, alternative strategies should be considered or developed.

The table below discusses a range of remediation options:

Table 5-1: Consideration of Soil Remediation Options

Option	Discussion	Applicability
Option 1 On-site treatment of contaminated soil	On-site treatment can provide a mechanism to reuse the processed material, and in some instances, avoid the need for large scale earthworks. Treatment options are contaminant-specific and can include bioremediation, soil washing, air sparging and soil vapour extraction and thermal desorption. Depending on the treatment option, licenses may be necessary for specific individual waste streams due to the potential for air pollution and the formation of harmful by-products during incineration processes. Licences for re-use of treated material/waste may also be required.	Treatment of soils impacted with bonded ACM is applicable for surficial impacts and may also be applicable for small quantities of soils, such as the suspected localised impacts in the vicinity of BH4. Treatment of soils impacted with friable asbestos (if encountered) is not applicable. On-site treatment of soil is unlikely to be applicable for the remaining COPC.
Option 2 Off-site treatment of contaminated soil	Contaminated soils are excavated, transported to an approved/licensed treatment facility, treated to remove/stabilise the contaminants then returned to the subject site, transported to an alternative site or disposed to an approved landfill facility. This option is also contaminant-specific. The cost per tonne for transport to and from the site and for treatment is considered to be relatively high. The material would also have to be assessed in terms of suitability for reuse as part of the proposed development works under the waste and resource recovery regulatory framework.	Not applicable for asbestos in soil and would also not likely be viable or practicable for small quantities of soils impacted by the other CoPC.
Option 3 Consolidation and isolation of impacted soil by cap and containment	This would include capping material in-situ beneath appropriate barriers, or the consolidation of contaminated soil within an appropriately designed cell, followed by the placement of an appropriate barrier over the material to reduce the potential for future disturbance. The capping and/or containment must be appropriate for the specific contaminants of concern. Depending on the concentrations of contaminants being	Applicable for asbestos where the asbestos concentrations exceed the Health Screening Levels (HSLs), and also applicable for the other CoPC provided there is no migration risk to groundwater. This option may have limited applicability for volatile CoPC. This generally would not be the preferred method if relatively small

⁹ NSW EPA, (2017). *Contaminated land Management, Guidelines for the NSW Site Auditor Scheme (3rd ed.).* (referred to as Site Auditor Guidelines 2017)

Option	Discussion	Applicability
	encapsulated, an ongoing Environmental Management Plan (EMP) may be required and an EMP would need to be publicly notified and made to be legally enforceable (e.g. via listings in the Section 10.7 planning certificate and on the land title).	quantities if contaminated soils are involved.
Option 4 Removal of contaminated material to an appropriate facility and reinstatement with clean material	Contaminated soils would be classified in accordance with NSW EPA guidelines for waste disposal, excavated and disposed of off-site to a licensed landfill. The material would have to meet the requirements for landfill disposal. Landfill gate fees would apply in addition to transport costs.	This option is applicable to the asbestos in the BH4 remediation area and may also be applicable for all other CoPC. The strategy is easy to implement, particularly for small quantities of contaminated soils. This may not be economically viable for larger quantities of material due to costs for disposal.
Option 5 Implementation of management strategy	Contaminated soils would be managed in such a way to reduce risks to the receptors and monitor the conditions over time so that there is an on-going minimisation of risk. This may occur via the implementation of monitoring programs, potentially also involving capping systems.	This is a potential option for managing low concentrations of asbestos (below the HSL) in soil, or for managing capped contamination in conjunction with Option 3.

5.3 Rationale for the Preferred Option for Remediation

The preferred remedial option for the asbestos remediation at BH4 is Option 4, excavation and off-site disposal to a licensed facility. This is considered to be the preferred option as the investigation data suggests that the impacts are localised, and the approach requires a short program of works. This strategy also avoids the burden of long-term management of the site via an EMP.

Should the pre-remediation (data gap) investigation identify the need for further remedial actions, the preferred remedial contingency options include:

- Option 4 excavation and off-site disposal to a licensed landfill facility; and
- A combination of Option 3 cap and containment, and Option 5 long-term management.

In relation to the potential for additional occurrences of asbestos in fill, a management approach is to be implemented to manage risks to workers during construction. The findings of the pre-remediation (data gap) investigation will establish whether there are any asbestos concentrations in soil that exceed the HSL (or any other contaminants exceed the HSLs/health investigation levels - HILs) that warrant remediation. Depending on the nature and extent of such remediation, we consider that Option 4 would most likely be applicable for small quantities of contaminated soils, and a combination of Options 3 and 5 would be applicable for larger quantities of contaminated soils, should contamination impacts be identified.

The appropriateness of which contingency to be implemented would be assessed subsequent to completion of the pre-remediation (data gap) investigation as outlined in Section 6.3.

We have considered the potential cost benefits of remediating the ACM in fill within the nominated BH4 remediation area via treatment. Whilst treatment may be possible, in our opinion it is not preferred due to the following:

- The estimated quantity of fill in the nominated BH4 remediation area is approximately 80m³ (this should be confirmed by the client's quantity surveyor), assuming that no further occurrences of ACM are identified that exceed the HSL. The cost benefit for treating and then validating the treatment process for such a small quantity of soil is not likely to be substantial in comparison to the preferred option of excavation and off-site disposal; and
- The fill in BH4 includes cohesive clayey soils. Treatment of ACM via physical removal (i.e. 'emu picking') in clayey soils is more difficult, time consuming and can be less effective compared to sandy soils.

Should treatment of ACM impacted fill be considered as an option, a Remediation Work Plan (RWP) or an addendum RAP must be prepared to outline the process and validation requirements, and must be submitted to the consent authority.

6 REMEDIATION DETAILS

Prior to commencement of demolition and any soil disturbance, the client, project manager and remediation contractor must review and make arrangements to meet the remediation site management requirements for the project as outlined in Section 9 of this RAP.

The following general sequence of works is anticipated:

- Pre-commencement meeting;
- Site establishment and demolition;
- Pre-remediation (data gap) investigation and any additional associated reporting;
- Remediation and validation of remedial works (where applicable); and
- Validation of remedial works and validation of imported soil materials. This includes materials
 imported to reinstate the remedial excavations, together with engineering material such as sub-base
 and drainage materials (e.g. recovered aggregate etc), landscaping materials or any other materials
 imported for service trenches etc, to the point in time that the validation report is issued.

Validation of the works will occur progressively throughout the remediation and construction program.

Details in relation to the above are outlined in the respective subsection below.

6.1 Roles and Responsibilities

Table 6-1: Roles and Responsibilities

Role	Responsibility
Developer/ client	Health Infrastructure
	The client (or their nominated project manager) is required to appoint the project team for the remediation/validation and must provide all investigation reports including this RAP to the project manager, remediation contractor/principal contractor, and any other relevant parties involved in the project.
Project	Capital Insight
Manager	The project manager is required to review all documents prepared for the project and manage the implementation of the procedures outlined in this RAP. The project manager is to take reasonable steps so that the remediation contractor and others have understood the RAP and will implement it in its totality. The project manager will review the RAP and other documents and will update the parties involved of any changes to the development or remediation sequence (in consultation with the validation consultant).
Principal	To be confirmed.
Contractor / Remediation Contractor	The principal contractor is required to review all documents prepared for the project and manage the implementation of the procedures outlined in this RAP. The principal contractor is to take reasonable steps so that the remediation contractor and others have understood the RAP and will implement it in its totality.
	With regards to the need for a construction/remediation phase AMP, the principal contractor/remediation contractor must engage a (and/or engage with a) suitably qualified consultant to prepare the AMP required in accordance with Section 9.1 of this RAP.

Role	Responsibility
	The principal contractor will review the RAP and other documents and will update the parties involved of any changes to the development or remediation sequence (in consultation with the validation consultant).
Remediation	To be confirmed.
Contractor	The remediation contractor (this may be the same entity as the principal contractor) is required to review all relevant documents prepared for the project, apply for any relevant removal licences or permits and implement the remediation requirements and relevant validation requirements (that are the remediation contractor's responsibility) outlined in this RAP. The remediation contractor should be, or must subcontract, a Class B licensed asbestos removalist to manage and undertake any works associated with the removal/disturbance of asbestos. The Class B contractor will need to submit the required notification to SafeWork NSW for asbestos removal works associated with the remediation of the BH4 area.
	With regards to the need for a construction/remediation phase AMP, the remediation contractor must engage a (and/or engage with a) suitably qualified consultant to prepare the AMP required in accordance with Section 9.1 of this RAP, unless this responsibility is already addressed by the principal contractor as noted above. The remediation contractor is required to collect all documentation associated with the remediation activities and forward this documentation onto the principal contractor, client and project manager as they become available.
Validation Consultant	The validation consultant provides consulting advice and validation services in relation to the remediation. The validation consultant undertakes the pre-remediation (data gap) investigation(s) and prepares the validation report (and EMP where applicable), as required. The validation consultant is required to review any deviation to this RAP or any unexpected finds if and when encountered during the site work. It is recommended that the validation consultant should have an LAA on staff. The validation consultant is required to liaise with the principal contractor, client, project manager and remediation contractor on all matters pertaining to the site contamination, remediation and validation, carry out the required pre-remediation (data gap) investigation, validation sampling and inspections.

6.2 Pre-commencement Meeting

The project team is to have a pre-commencement meeting to discuss the sequence of remediation, and the remediation and validation tasks. The site management plan for remediation works (see Section 9) must be reviewed by project manager and remediation contractor, and appropriate steps are to be taken to ensure the adequate implementation of the plan.

6.3 Pre-remediation (Data Gap) Investigation and Reporting

Prior to the commencement of the pre-remediation (data gap) investigation, the validation consultant must prepare a detailed Sampling, Analysis and Quality Plan (SAQP) in accordance with the Consultants Reporting Guidelines and NEPM (2013). Where the investigation is staged to align with the demolition or development

staging, a separate SAQP can be prepared for each stage, or alternatively, a single/overarching SAQP can be prepared to account for the staging.

Reference is to be made to Figure 6 in Appendix A for the proposed investigation locations.

The investigation(s) must include the following as a minimum:

- An initial inspection following the demolition of buildings/structures and removal of pavements to assess the site conditions and any potential unexpected finds. The site conditions must be documented with photographs;
- Preparation and implementation of a suitable Work Health and Safety (WHS) plan that considers the potential for identifying asbestos during the sampling;
- Soil sampling from test pits from the proposed locations presented on Figure 6 in Appendix A. The test pits must be excavated to the base of the fill and into the natural ground (where possible) so that the depth of fill is confirmed;
- Soil samples must be collected from each fill profile for laboratory analysis, and one sample from each location should be collected from the underlying natural soil/bedrock if possible. If there are any indicators of contamination in the natural soil (e.g. staining or odours) then deeper sampling should occur;
- Bulk (10L) field asbestos quantification must occur in accordance with the NEPM (2013) requirements;
- A sample from each fill profile is to be analysed for the CoPC for fill as nominated in the CSM. Any FCF
 identified in the bulk samples are also to be analysed for asbestos;
- If there is a to be a surplus of materials on the project, or if waste is to be disposed off-site, additional analysis for waste classification purposes must occur;
- Appropriate QA/QC samples are to be obtained and analysed for soil, with regards to the NEPM (2013)
 requirements; and
- Use of appropriate SAC for the Tier 1 risk assessment, as outlined below.

For the investigation(s), the following SAC are to be adopted:

- Analytical results for CoPC (with the exception of carcinogenic PAHs) are to be compared to the relevant HILs for a 'recreational and public open space' exposure scenario (HIL-C) as presented in Schedule B1 of the NEPM (2013);
- Analytical results for carcinogenic PAHs are to be compared to the HIL-D criteria, as presented in Schedule B1 of the NEPM (2013). JKE note that the HHERA derived a site-specific criterion of 80mg/kg for carcinogenic PAHs. However, considering the assumptions and uncertainties outlined in the HHERA, a revised criterion of 40mg/kg was nominated. The revised site-specific criterion aligns with the HIL-D criterion;
- Analytical results for volatile CoPC are to be compared to the relevant HSLs for 'commercial/industrial' exposure scenario (HSL-D), as presented in Schedule B1 of the NEPM (2013). The criteria for 'sandy' type soils and a depth interval of 0m to <1m are to be adopted;
- Analytical results for ACM in soil are to be compared to the HSL-C criterion for soils presented in Schedule B1 (Table 7) of NEPM 2013. No visible FCF/ACM is to be present at the site surface;
- Analytical results for asbestos fines/fibrous asbestos (AF/FA) in soil are to be compared to the HSL criterion for soils presented in Schedule B1 (Table 7) of NEPM 2013; and

• Analytical results for CoPC are to be compared to the respective ecological investigation level (EILs) and ecological screening level (ESLs) for an 'urban residential and public open space' (URPOS) scenario as presented in Schedule B1 of NEPM 2013. The EILs for selected metals may be adjusted based on soil-specific parameters in accordance with Schedule B1 of NEPM 2013. The ESL criterion for benzo(a)pyrene has been increased to 20mg/kg, based on the Canadian Soil Quality Guidelines¹⁰.

Additional sampling in the vicinity of BH4 could also be undertaken in a step-out approach, to refine the approximate lateral extent of remediation in this area. As the contaminant of concern in this area is limited to bonded ACM, the additional analysis of samples in this area could be limited to asbestos (500mL quantification samples), and 10L bulk field screening for visible ACM.

On completion of the investigation, a report is to be prepared by the validation consultant in accordance with the Consultants Reporting Guidelines and is to include a Tier 1 risk assessment and review of the CSM.

In conjunction with the above, the validation consultant is to confirm whether the investigation has identified any triggers for further remediation. If a trigger is identified, the pre-remediation investigation report is to include a discussion and details regarding the extent of remediation, and provide an addendum to the RAP specifying/confirming the remediation and validation requirements. It is expected this will align with the RAP framework and consultation will occur between the validation consultant, client and principal contractor as part of this process.

In the event that there is a need for remediation that falls outside the scope of contingency remedial actions outlined in this RAP, a new RAP must be prepared and submitted to the client/consent authority, principal contractor and remediation contractor etc (as applicable). The client/consent authority and project manager must then establish the appropriate course of action in relation to any additional planning/consent requirements prior to making arrangements to carry out the additional works.

The project team must factor the above requirements into the project timeline so that all of the above can be closed out/finalised prior to the commencement of earthworks/construction.

6.4 Site Establishment and Demolition

The remediation contractor is to establish on site as required to facilitate the remediation and validation works. Consideration must be given to the work sequence and extent of remediation/excavation so that the site establishment (e.g. site sheds, fencing, access points etc) does not inhibit the required works. Any soil/gravel-type materials imported during the site establishment (e.g. DGB, 40/70 etc) must be validated in accordance with Section 7 of this report.

The demolition of buildings/structures etc must occur with regards to the findings of the hazardous building materials survey report.

¹⁰ Canadian Council of Ministers of the Environment, (1999). *Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)* (referred to as the Canadian Soil Quality Guidelines)

As part of the demolition process, <u>all visible FCF/ACM must be removed from the ground surface across the entire site</u> prior to any works that disturb the existing pavements/soils. An asbestos surface clearance for the ground surface across the entire site must be provided by a LAA to demonstrate this has occurred. This ground surface clearance will be in addition to any specific clearances associated with the demolition works.

All waste from the demolition is to be disposed to facilities that are licenced by the NSW EPA to accept the waste. The demolition contractor is to maintain adequate records and retain all documentation for such activities including:

- A summary register including details such as waste disposal dates, waste materials descriptions, disposal locations (i.e. facility details) and reconciliation of this information with waste disposal docket numbers;
- Waste tracking records and transport certificates (where waste is required to be tracked/transported in accordance with the regulations); and
- Disposal dockets for the waste. Legible dockets are to be provided for all waste materials so they can be reconciled with the register.

The above information is to be supplied to the validation consultant for assessment and inclusion in the site validation report.

6.5 Remedial Actions – Remediation of Asbestos Contaminated Fill at BH4

This remedial action applies to the BH4 remediation area (as shown on Figure 6 in the appendices), and any other areas of asbestos-contaminated fill identified during the pre-remediation (data gap) investigation process.

Prior to commencement of excavation work, a waste classification must occur for the material to be excavated and removed from the remediation area (this may occur during the data gap investigation process as noted previously). The classification must occur with regards to the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014)¹¹ and the NSW EPA Sampling Design Part 1 – Application (2022)¹². A waste classification report must be prepared and the receiving landfill facility should be contacted to obtain disposal approval. This waste classification documentation should be arranged at least 3-4 weeks prior to commencement of any excavation works in order to avoid unnecessary delays.

The procedure for excavation and disposal of asbestos-contaminated fill at BH4 is outlined in the following table:

Table 6-2: Remediation Details – Excavate and Dispose Contaminated Fill – Asbestos impacted

Step	Primary Role/	Procedure
	Responsibility	
1.	Remediation	Address Stability Issues and Underground Services:
	contractor	Geotechnical advice must be sought regarding the stability of adjacent structures and/or adjacent areas prior to commencing remediation (as required). Stability issues are to be addressed to the satisfaction of a suitably qualified geotechnical engineer. This may require the installation of temporary shoring, if specified by the engineer.

¹¹ NSW EPA, (2014). Waste Classification Guidelines, Part 1: Classifying Waste. (referred to as Waste Classification Guidelines 2014)

¹² NSW EPA, (2022). Sampling design part 1 - application. (referred to as EPA Sampling Design Guidelines 2022)

-				
Step	Primary Role/ Responsibility	Procedure		
		All underground services are to be appropriately disconnected or rerouted to facilitate the works.		
2.	Remediation contractor (or nominated licenced sub- contractor)	Establish Asbestos Related Controls and Arrange Licences and Tracking Requirements: Prior to the commencement of any excavation of asbestos impacted fill/soil, asbestos related controls, licences and tracking requirements should be implemented as outlined in the AMP (refer to Section 9 of this RAP).		
3.	Remediation contractor (or nominated Class B licensed subcontractor) Validation consultant (inspections)	 Excavation and Disposal of Contaminated Fill: Remediation will be undertaken as follows: Submit an application to dispose of the fill (in accordance with the assigned waste classification) to a facility that is appropriately licensed by the NSW EPA to receive the waste, and obtain authorisation to dispose. Establish the required waste tracking using the EPA-endorsed waste tracking system; Contact the validation consultant to arrange for the consultant to be present to witness the remedial excavation works; The excavation and removal of contaminated soil must be completed in accordance with the construction phase AMP; The area where fill is to be removed must be marked out using an appropriate method (i.e. star pickets), so the extent of remediation is clear to the excavator operator and other relevant parties; Excavate the fill from the remediation area, down to the surface of the underlying soil/bedrock (whichever is shallower); Load the fill directly into trucks and dispose of the soil to a facility licensed by the NSW EPA to receive the waste; and All documents including landfill disposal dockets must be retained by the remediation contractor/asbestos removal contractor and forwarded to the client and validation consultant. This documentation forms a key part of the validation process and is to be included in the validation report. 		
4.	Validation consultant	Validation of Excavation: Once all fill is removed to required levels, the base and walls of the excavation are to be validated in accordance with the validation plan outlined in Section 7, which includes bulk field screening and completion of a surface asbestos clearance by a LAA.		
5.	Remediation contractor and validation consultant	Backfilling/Reinstatement of Excavation: Where required, the remedial excavation is to be reinstated with clean (validated) materials, to meet the geotechnical and landscape requirements of the project. Imported materials must be validated in accordance with the validation plan outlined in Section 7.		

Part 7 of the Protection of the Environment (POEO) Waste Regulation (2014)¹³ sets out the requirements for the transportation and management of asbestos waste and Clause 79 of the POEO Waste Regulation requires waste transporters to provide information to the NSW EPA regarding the movement of any load in NSW of more than 10m² of asbestos sheeting, or 100 kilograms of asbestos waste. To fulfil these legal obligations, asbestos waste transporters must use the EPA-endorsed waste tracing system.

Clause 78 of the POEO Waste Regulation requires that a person who transports asbestos waste must ensure that:

¹³ Protection of the Environment Operations (Waste) Regulation 2019 (NSW). (referred to as POEO Waste Regulation)

- Any part of any vehicle in which the person transports the waste is covered, and leak-proof, during the transportation; and
- If the waste consists of bonded asbestos material—it is securely packaged during the transportation;
 and
- If the waste consists of friable asbestos material—it is kept in a sealed container during transportation;
 and
- If the waste consists of asbestos-contaminated soils—it is wetted down.

Asbestos waste cannot be re-used or recycled.

6.6 Remedial Actions – Excavate and Dispose Contingency

In the event that the pre-remediation (data gap) investigation identifies additional non-asbestos related soil contamination that is to be remediated via the excavation and off-site disposal method, this is to occur via the implementation of the following contingency.

Prior to commencement of excavation work, a waste classification must occur for the material to be excavated and removed from the remediation area (this should occur during the data gap investigation process as noted previously). The classification must occur with regards to the Waste Classification Guidelines 2014 and the EPA Sampling Design Guidelines 2022. A waste classification report must be prepared and the receiving landfill facility should be contacted to obtain disposal approval. This waste classification documentation should be arranged at least 3-4 weeks prior to commencement of any excavation works in order to avoid unnecessary delays.

Reference is to be made to the procedure outlined in Section 6.5 for the excavation and disposal of asbestos impacted fill. The procedure for excavation and disposal of non-asbestos impacted soil is outlined in the following table:

Table 6-3: Remediation Details – Excavate and Dispose Contaminated Soil – Non-Asbestos Impacted

Step	Primary Role/ Responsibility	Procedure
1.	Remediation contractor	Address Stability Issues and Underground Services: Geotechnical advice must be sought regarding the stability of adjacent structures and/or adjacent areas prior to commencing remediation (as required). Stability issues are to be addressed to the satisfaction of a suitably qualified geotechnical engineer. This may require the installation of temporary shoring, if specified by the engineer. All underground services are to be appropriately disconnected or rerouted to facilitate the works.
2.	Remediation contractor Validation consultant (inspections)	 Excavation and Disposal of Contaminated Fill: Remediation will be undertaken as follows: Submit an application to dispose of the soil (in accordance with the assigned waste classification) to a facility that is appropriately licensed by the NSW EPA to receive the waste, and obtain authorisation to dispose; Contact the validation consultant to arrange for the consultant to be present to witness the remedial excavation works; The area where fill is to be removed must be marked out using an appropriate method (i.e. star pickets), so the extent of remediation is clear to the excavator operator and other relevant parties; Excavate the fill from the remediation area, down to the surface of the underlying soil/bedrock (whichever is shallower); Load the fill directly into trucks and dispose of the soil to a facility licensed by the NSW EPA to receive the waste; and All documents including landfill disposal dockets must be retained by the remediation contractor and forwarded to the client and validation consultant. This documentation forms a key part of the validation process and is to be included in the validation report.
3.	Validation consultant	Validation of Excavation: Once all contaminated soil is removed to required levels, the base and walls of the excavation are to be validated in accordance with the validation plan outlined in Section 7.
4.	Remediation contractor and validation consultant	Backfilling/Reinstatement of Excavation: Where required, the remedial excavation is to be reinstated with clean (validated) materials, to meet the geotechnical and landscape requirements of the project. Imported materials must be validated in accordance with the validation plan outlined in Section 7.

6.7 Remedial Actions - Capping Contingency

In the event that contaminated soil cannot be practicably removed, or if the quantity of contaminated material is cost-prohibitive to dispose of, an assessment must be made by the validation consultant regarding the risks posed by this material in the context of the proposed development, should it remain on site and be capped. For hydrocarbon impacted material, it may not be possible to simply cap/contain and manage this material if it poses an unacceptable vapour risk beneath a proposed building. Therefore, further sampling, analysis and risk assessment will be required in this scenario in order to establish a suitable course of action. This contingency is well suited to asbestos contamination and other non-volatile contaminants, provided they are confirmed to not be mobile (i.e. do not present a risk of migration).

In the event that this contingency is to be implemented, a rationale for applying the contingency must be documented, the details below must be reviewed and updated for the situation, and approval must be sought from the project manager/client and the consent authority prior to proceeding with the remedial works (i.e. within an addendum RAP). A validation plan must also be documented.

If all contaminated fill cannot be practicably removed and disposed off-site, the contaminated fill must be capped with a robust capping layer and consequently the site and this area will be managed under a long-term EMP. This can occur in-situ, or within a suitably designed cell. The minimum capping requirements in such a circumstance are as follows:

- Installation of a brightly coloured (i.e. orange) geotextile marker layer over the contaminated fill;
- Installation of a minimum of 500mm of clean (validated) materials if the area is to be landscaped, and all landscaping must be shallow and must not penetrate the geotextile. If shallow landscaping is not achievable, then the capping thickness must be increased accordingly to meet this requirement; and
- In areas that are to be paved with hardstand (e.g. pavements, new building slabs etc), there is no need for 500mm of clean material and the pavements can be constructed directly over the top of the geotextile marker in accordance with the engineering requirements for the project.

The proposed remediation and validation steps associated with in-situ capping are outlined in the following table.

Table 6-4: Remediation Details - Capping Contingency

Step	Primary Role/ Responsibility	Procedure
1.	Remediation contractor/principal contractor	Service Trenching, Piling/Footing Excavations and Establishment of Pre-Capping Site Levels: The principal contractor/remediation contractor are to undertake the relevant site preparation works, piling/footing excavations and any excavations required to facilitate the capping procedures. Any surplus excavated materials must be managed and (if required) disposed off-site appropriately in accordance with the relevant requirements outlined previously in this RAP applicable to an excavation/disposal procedure.
2.	Remediation contractor	Installation of Marker Layers and Survey of site levels: After the bulk excavation levels are achieved to facilitate the minimum capping requirements, the geotextile marker is to be installed over the fill and secured appropriately using 'U' nails, pegs or other means. A pre-capping levels survey is to be completed by the remediation contractor prior to the placement of any overlying clean capping layers or construction of pavements etc. The purpose of the survey is to provide factual information of the site levels, and the horizontal extent of the geotextile marker, prior to installation of the clean capping layers. Survey points must be taken at appropriate frequencies (say every 5m lineal for narrow areas, a 5m grid for broader areas, at the corners/edges of the geotextile, and more frequently for significant change in surface elevation. The pre-capping levels survey is to be provided to the client/project manager and the validation consultant prior to any further capping works commencing.

Step	Primary Role/ Responsibility	Procedure
3.	Validation consultant and remediation contractor	Importation of Capping Materials: Imported materials are to be validated in accordance with Section 7. Validated materials can then be used to achieve the minimum capping requirements for the project.
4.	Remediation contractor	Post-Capping Survey of site levels: After completion of capping, a post-capping levels survey is to be completed by the remediation contractor. The purpose of the survey is to provide factual information regarding the capping thickness and confirm that the minimum capping requirements have been achieved. Survey points must be taken at appropriate frequencies as noted for the precapping survey. The post-capping levels survey is to be provided to the client/project manager and the validation consultant.

Where contaminated soil is capped on site, a long-term EMP will be required to manage the contamination capped at the site and the long-term EMP will be documented as part of the overall validation process. Public notification and enforcement mechanisms for the long-term EMP are to be arranged and the consent authority (and local council, if applicable) is to be provided with a draft copy of the long-term EMP for consultation prior to finalisation of the document.

The notification and enforcement mechanisms are to include notation on the planning certificate under Section 10.7 of the Environmental Planning and Assessment Act (1979) and a covenant registered on the title to land under Section 88B of the Conveyancing Act (1919).

The long-term EMP will include requirements for passive management of the capping system that will focus on maintaining the capping layers to minimise the potential of exposure to the underlying contaminated soil. The long-term EMP will also include contingencies for managing minor intrusive works in the event that the capping system is breached.

6.8 Remediation Documentation

The remediation contractor must retain all documentation associated with the site management and remediation, including but not limited to:

- Asbestos management documentation, including all relevant notifications and monitoring reports, and clearance certificates where applicable (additional details in this regard are to be outlined in the construction-phase AMP);
- Photographs of remediation works;
- Waste disposal dockets and waste tracking documentation (see below and the example waste tracking form in Appendix D); and
- Imported materials documentation (see below and the example imported material tracking form in Appendix D).

Copies of these documents must be forwarded to the project manager and the validation consultant for assessment and inclusion in the validation report.

6.8.1 Waste

All waste removed from the site is to be appropriately classified, tracked and managed in accordance with the relevant guidelines and regulations. The remediation contractor (and/or their nominated licensed asbestos removalist) is to maintain adequate records and retain all documentation for waste disposal activities including:

- A summary register (in Microsoft Excel format) including details such as waste disposal dates, waste
 materials descriptions, disposal locations (i.e. facility details) and reconciliation of this information with
 the associated waste classification documentation and the waste disposal docket numbers;
- Waste tracking records and transport certificates (where waste is required to be tracked/transported
 in accordance with the regulations). This includes consignment details via the EPA-endorsed waste
 tracking system for asbestos waste; and
- Disposal dockets for the waste (i.e. weighbridge dockets for each load).

Any soil waste classification documentation is to be prepared in accordance with the reporting requirements specified by the NSW EPA.

A review of the disposal facility's Environment Protection Licence (EPL) issued under the Protection of the Environment Operations (POEO) Act (1997)¹⁴ is to be undertaken to assess whether the facility is appropriately licensed to receive the waste.

The above information is to be provided to the validation consultant for inclusion in the validation report. The register must be set up at the beginning of the project and provided to the validation consultant regularly so the details can be checked and any rectification of the record keeping process can occur in a timely manner.

An example template for the register is provided in Appendix D.

6.8.2 Imported Materials Register

The remediation contractor (and/or their nominated construction contractor) is to maintain, for the duration of the project, an imported material register. This must include a register (in Microsoft Excel format) with details of each imported material type, supplier details, summary record of where the imported materials were placed on site, and importation docket numbers and a tally of quantities (separated for each import stream). Dockets for imported materials are to be provided electronically so these can be reconciled with the register.

Examples of imported materials for this project may include but would not be limited to: site preparation materials (e.g. DGB, 40/70, material to create the pavement base or piling platforms etc); clean capping or backfill material such as virgin excavated natural material (VENM); and landscaping materials such as topsoil garden mixes, mulches etc.

¹⁴NSW Government, (1997). Protection of Environment Operations Act. (referred to as POEO Act 1997)

The above information is to be provided to the validation consultant for inclusion in the validation report. The register be set up at the beginning of the project and provided to the validation consultant regularly so the details can be checked and any rectification of the record keeping process can occur in a timely manner.

An example template for the register is provided in Appendix D.

7 VALIDATION PLAN

Validation is necessary to demonstrate that remedial measures described in the RAP have been successful and that the site is suitable for the intended land use. The sampling program for the validation is outlined in Section 7.1. This is the minimum requirement based on the remedial strategies provided. Additional validation sampling may be required based on observations made during remediation.

7.1 Validation Sampling and Documentation

The validation requirements for the site are outlined below:

7.1.1 Validation of Excavation of Contamination Fill – Asbestos Impacted

The validation requirements for excavation of asbestos contaminated fill within the BH4 remediation area, and any other areas of asbestos impacted fill requiring remediation, are outlined in the following table:

Table 7-1: Validation Requirements – Asbestos Impacted Fill

Aspect	Sampling	Analysis	Observations and
			Documentation
Validation sampling for asbestos contaminated fill following removal of fill.	No sampling required at the base of the excavation (visual validation only), provided the excavation extends to natural ground. One sample per exposed fill profile along the/each excavation wall (minimum one sample per 5m lineal), and per vertical metre where a single fill profile extends beyond 1m deep (though we note that fill is not expected to be this deep based on the current dataset). Where the asbestos impacted is associated with bonded ACM, sampling is to included bulk sampling (10L field screening) for asbestos, excluding natural soil. Where natural soil is confirmed, a visual surface clearance for asbestos is sufficient.	Analysis Any ACM to be analysed for asbestos. For AF/FA impacts, analysis of samples for asbestos (500ml NEPM 2013 method) is required.	
	For AF/FA impacts (i.e. relating to a contingency remediation scenario), sampling (500ml NEPM 2013 method) is required. Bulk (10L) field screening is not proposed in this instance. Sampling is to include fill soil only.		Disposal dockets to be retained by the remediation contractor and forwarded to validation consultant for inclusion in the validation report.

7.1.2 Validation of Excavation of Contamination Soil – Non-Asbestos Impacted

Table 7-2: Validation Requirements – Non-Asbestos Impacted Soil

Aspect	Sampling	Analysis	Observations and
Validation sampling (non- asbestos) for removal of contaminated soil, excavation base	Sampling density to meet minimum number recommended in the NSW EPA Sampling Design Guidelines (2022) for larger areas of 400m² or greater. For smaller areas, the higher density of either: - An 8m by 8m square grid plan; or - At least two judgmental locations for areas that are less than 8m by 8m in area.	Contaminant of concern to be identify as part of pre-remediation (data gap) investigation process.	Documentation Observations to be recorded by the validation consultant to confirm soil removal is acceptable. Observations to be recorded by the validation consultant to document fill/soil lithology on the base and walls of the excavation. A sample location plan is to be prepared by the validation consultant, documenting the sample locations and final extent of the remediation area. Photographs to be taken. Samples to be screened using photo-ionisation detector (PID). Observations of staining and odour to be recorded. Disposal dockets to be retained by the remediation contractor and forwarded to validation consultant for inclusion in the validation report.
Validation sampling (non- asbestos) for removal of contaminated soil, excavation walls	One sample per exposed fill profile along the/each excavation wall (minimum one sample per 5m lineal), and per vertical metre where a single fill profile extends beyond 1m deep. One sample per exposed natural soil profile along the/each excavation wall (minimum one sample per 5m lineal), and per vertical metre where a single profile extends beyond 1m deep.	As above	As above

7.1.3 Validation of Cap and Containment

Table 7-3: Validation Requirements – Capping

Aspect	Sampling	Analysis	Observations and Documentation
Survey of site levels.	NA	NA	Remediation contractor to obtain the survey as required in Section 6. It is also expected that the remediation contractor or their nominated construction contractor will provide as-built drawings for the project which document the capping layers.
Inspections.	NA	NA	Validation consultant to carry out inspections to document the installation of the cap. Key hold points for inspections include: - Geotextile installation; - During importation of materials used to construct the cap; and - Finished surface levels. A photographic record is to be maintained by the remediation contractor and validation consultant.
Validation of imported materials.	As indicated below in Section 7.1.4	As indicated below in Section 7.1.4.	As indicated below in Section 7.1.4

7.1.4 Imported Materials

The table below outlines the validation requirements for material imported onto the site:

Table 7-4: Validation Requirements – Imported Materials

Aspect	Sampling	Analysis	Observations and Documentation	
Imported VENM backfill (if	Minimum of three samples per 75m³, with	Heavy metals (arsenic, cadmium,	Remediation contractor to supply existing VENM documentation/report (report to be	
required)	one sample per additional 25m³ (per source) for smaller volumes.	chromium, copper, lead, mercury, nickel and zinc), TRHs, BTEX, PAHs,	waste classification reporting requirements). A hold point remains until the validation consultant approves the	
	For larger volumes (i.e. greater than 250m³ from a single source), a reduced sampling frequency may be adopted (as a minimum, 10 samples per source), at the discretion of the validation consultant.	OCPs, PCBs and asbestos (500ml NEPM 2013 analysis). Additional analysis, such as PFAS, may be required depending on the site history of the source property.	material for importation or advises on the next steps. Material is to be inspected upon importation by the validation consultant to confirm it is free of visible/olfactory indicators of contamination and is consistent with documentation. Photographic documentation and an inspection log are to be maintained.	

Aspect	Sampling	Analysis	Observations and Documentation
Imported	Minimum of three	Heavy metals (as	Where check sampling occurs by the validation consultant due to deficiencies or irregularities in existing VENM documentation, the following is required: - Date of sampling and description of material sampled; - An estimate of the volume of material imported at the time of sampling; - Sample location plan; and - Analytical reports and tabulated results with comparison to the Validation Assessment Criteria (VAC). Remediation contractor to provide product specification and documentation to
engineering materials such as recycled aggregate, road base etc	samples per 75m³, with one sample per 25m³. Except for coarse 40/70 materials which will only be visually	above), TRHs, BTEX, PAHs, OCPs, PCBs and asbestos (500ml quantification).	confirm the material has been classified with reference to a relevant Resource Recovery Order/Exemption. A hold point remains until the validation consultant approves the material for importation or
Excavated Natural	inspected for FCF and other indicators of contamination. ENM testing must meet	As required in the	advises on the next steps. Review of the facility's EPL, where applicable. Material is to be inspected by the
Material (ENM)	the specification within the ENM Order. If the analysis is not compliant, the validation consultant must carry out an ENM assessment and prepare a report in accordance with the ENM Order/Exemption prior to material being imported.	ENM Order.	 validation consultant upon importation to confirm it is free of visible/olfactory indicators of contamination and is consistent with documentation. Where check sampling occurs by the validation consultant due to deficiencies or irregularities in existing documentation, the following is required: Date of sampling and description of material sampled; An estimate of the volume of material
	importeu.		imported at the time of sampling; - Sample location plan; and - Analytical reports and tabulated results with comparison to the VAC.
Imported engineering materials comprising only natural quarried products.	At the validation consultant's discretion based on robustness of supplier documentation.	At the validation consultant's discretion based on robustness of supplier documentation.	Remediation contractor to provide documentation from the supplier confirming the material is a product comprising only natural quarried material. A hold point remains until the validation consultant approves the material for importation or advises on the next steps.
			Review of the quarry's EPL. Material is to be inspected by the validation consultant upon importation to confirm it is free of anthropogenic

Aspect	Sampling	Analysis	Observations and Documentation
Imported mulch.	Minimum of three	Heavy metals (as	materials, visible and olfactory indicators of contamination, and is consistent with documentation. Where check sampling occurs by the validation consultant due to deficiencies or irregularities in existing documentation, the following is required: - Date of sampling and description of material sampled; - An estimate of the volume of material imported at the time of sampling; - Sample location plan; and - Analytical reports and tabulated results with comparison to the VAC.
Imported mulch, garden mix/turf underlay/topsoil	Minimum of three samples per 75m³, with one sample per additional 25m³. Bulk sampling (10L field screening) for asbestos is to occur along with the collection of samples for laboratory analysis.	Heavy metals (as above), TRHs, BTEX, PAHs, OCPs & OPPs, PCBs, PFAS and asbestos (500ml NEPM 2013 analysis). Analysis of mulch can be limited to asbestos (500ml) and visual observations to confirm there are no anthropogenic materials. Any observed FCF to be analysed for asbestos.	Remediation contractor to provide documentation from the supplier confirming the product specification. This must include a description of the Australian Standard or other relevant product specification under which the material is produced, and the components. A hold point remains until the validation consultant approves the material for importation or advises on the next steps. Material is to be inspected by the validation consultant upon importation to confirm it is free of anthropogenic materials, visible and olfactory indicators of contamination, and is consistent with documentation. The validation consultant is to review any existing/available analysis results for the materials. A minimum of one batch for each imported material type (from each individual supplier) must be inspected by the validation consultant. This inspection must be repeated for each material type from each supplier, a minimum of once per month thereafter. Where check sampling occurs by the validation consultant due to deficiencies or irregularities in existing documentation, the following is required: Date of sampling and description of material sampled; An estimate of the volume of material imported at the time of sampling; Sample location plan; and Analytical reports and tabulated results with comparison to the VAC.

7.2 Validation Assessment Criteria and Data Assessment

The VAC to be adopted for the validation assessment are outlined in the table below:

Table 7-5: Validation Assessment Criteria (VAC)

Validation Aspect	VAC	
Waste classification	In accordance with the procedures and criteria outlined in the NSW EPA Waste Classification Guidelines 2014 and any other exemptions/approvals as required.	
Soil validation		
Validation of capping	Validation of capping will occur via a review of survey information, as-built drawings and via the inspection process. The validation report is to include cross-sections documenting the completed capping details for the various areas of the site.	
Imported materials	 Material imported as general fill must only be VENM or ENM. VENM is defined in the POEO Act 1997 as material: That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities; That does not contain sulfidic ores or other waste; and Includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette. ENM and recycled materials are to meet the criteria of the relevant exemption/order under which they are produced. Analytical results for VENM and other imported materials will need to be consistent with expectations for those materials. For VENM, it is expected that: 	
	 With expectations for those materials. For VENM, it is expected that: Heavy metal concentrations are to be less than the most conservative added contaminant limit (ACL) concentrations for an URPOS exposure setting presented in Schedule B1 of the NEPM (2013), except for lead which should nominally be less than 100mg/kg; and 	

- Organic compounds are to be less than the laboratory PQLs and asbestos to be absent

All materials imported onto the site must also be adequately assessed as being appropriate for the final use of the site, including ecological considerations. A risk-based assessment approach is to be adopted with regards to the tier 1 screening criteria presented in Schedule B1 of NEPM (2013).

Aesthetics: all imported materials are to be free of staining and odours.

Laboratory data are to be assessed as above or below the VAC. Statistical analysis is not proposed. Notwithstanding, statistical analysis can be applied by the validation consultant if deemed appropriate and if the analysis occurs with regards to the relevant guidelines.

7.3 Validation Sampling, Analysis and Quality Plan (SAQP)

Data Quality Objectives (DQOs) and Data Quality Indicators (DQIs) should be clearly outlined and assessed as part of the validation process. A framework for the DQO and DQI process is outlined below and should be reflected in the validation report. These relate to the remediation only and it is anticipated that the SAQP(s) for the pre-remediation (data gap) investigation(s) will include this information in the context of those works.

DQOs have been broadly established for the validation with regards to the seven-step process outlined NEPM (2013). The seven steps include the following which are detailed further in the following subsections:

- State the problem;
- Identify the decisions/goal of the study;
- Identify information inputs;
- Define the study boundary;
- Develop the analytical approach/decision rule;
- Specify the performance/acceptance criteria; and
- Optimise the design for obtaining the data.

DQIs are to be assessed based on field and laboratory considerations for precision, accuracy, representativeness, completeness and comparability.

7.3.1 Step 1 - State the Problem

Validation data is required to demonstrate that the remediation is successful and that the site is suitable for the proposed land use described in Section 1.1.

7.3.2 Step 2 - Identify the Decisions of the Study

The remediation goal, aims and objectives are defined in Section 1.1. The decisions to be made reflect these objectives and are as follows:

 Were the relevant reports prepared prior to commencement of the remediation (e.g. pre-remediation data gap investigation reports, revised/addendum RAP where applicable, waste classification, AMP, etc)?

- Was the remediation undertaken in accordance with the RAP and any supplementary reports?
- If there were any deviations, what were these and how do they impact the outcome of the validation?
- Are any of the validation results above the VAC and what is the implication of this in relation to the remediation/validation and future site management?
- Is the site suitable for the proposed development from a contamination viewpoint?

7.3.3 Step 3 - Identify Information Inputs

The primary information inputs required to address the decisions outlined in Step 2 include the following:

- Existing relevant data from previous reports;
- Site information, including site observations, inspections, asbestos clearance certificates, waste and imported materials registers;
- Validation sampling and laboratory analysis results for the remedial excavation and for imported materials;
- Laboratory analysis (as required); and
- Field and laboratory QA/QC data.

7.3.4 Step 4 - Define the Study Boundary

The remediation and validation will be confined to the RAP site boundaries as shown in Figure 2 in Appendix A. The final remediation extent will be confirmed via the pre-remediation (data gap) investigation and validation process.

7.3.5 Step 5 - Develop an Analytical Approach (or Decision Rule)

7.3.5.1 VAC

The validation data will be assessed in accordance with the requirements outlined in Section 7.1.

7.3.5.2 Field and Laboratory QA/QC

Field QA/QC is required for imported materials. This is to include:

- Analysis of inter-laboratory duplicates (5% frequency) and intra-laboratory duplicates (5% frequency),
 analysed for the same analytical suite as the primary samples;
- Trip blank samples (one per batch/day of sampling), analysed for the same analytical suite as the primary samples excluding asbestos;
- Trip spike samples (one per batch/day of sampling), analysed for BTEX, only where samples within that batch have been scheduled for analysis of TRH or BTEX; and
- Rinsate samples (one per batch), analysed for the same analytical suite as the primary samples excluding asbestos, only where re-usable sampling equipment is utilised.

DQIs for field and laboratory QA/QC samples are defined below:

Field Duplicates

Acceptable targets for precision of field duplicates will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Trip Blanks

Acceptable targets for trip blank samples will be less than the PQL.

Trip Spikes

Acceptable targets for trip spike samples will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data will be assessed against the laboratory QA/QC criteria. These criteria are developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the typical limits is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics; and
- 60-140% recovery acceptable for organics.

Surrogate Spikes

60-140% recovery acceptable for general organics.

Method Blanks

• All results less than PQL.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence will be reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is to be undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, the validation consultant is to adopt the most conservative concentration reported.

7.3.5.3 Appropriateness of PQLs

The PQLs of the analytical methods are to be considered in relation to the VAC to confirm that the PQLs are less than the VAC. In cases where the PQLs are greater than the VAC, a discussion of this is to be provided.

7.3.6 Step 6 – Specify Limits on Decision Errors

To limit the potential for decision errors, a range of quality assurance processes are adopted. A quantitative assessment of the potential for false positives and false negatives in the analytical results is to be undertaken with reference to Schedule B(3) of NEPM (2013) using the data quality assurance information collected. Data will be assessed as above or below the VAC. Statistical analysis is not proposed, therefore there have been no limits on decision errors set for validation purposes.

7.3.7 Step 7 - Optimise the Design for Obtaining Data

The design is to be optimised via the collection of validation data to demonstrate the success of the key aspects of the remediation. Data collection will be via various methods including inspections and sampling.

The proposed sampling plan for the validation is described in Section 7.1.

7.4 Validation Report

As part of the site validation process, a site validation report will be prepared by the validation consultant. The report will present the results of the validation assessment and will be prepared in accordance with the Consultants Reporting Guidelines.

Where staged validation is required to enable staged development and occupation/use of parts of the site, the validation consultant is to assess this in consultation with the project stakeholders. JKE see no impediment to staged validation, should it be necessary to facilitate the proposed development works. A validation report must be issued for each stage prior to use of the land/area applicable to each stage.

It should also be noted that any material changes to the remediation or validation strategy will require an updated or addendum RAP, which in turn must be approved by the consent authority.

The need for a post-remediation (i.e. long-term) AMP must be assessed based on the outcome of the validation, as discussed in Section 9.1.

8 CONTINGENCY PLAN

The contingency plan for the project in the context of the site remediation is provided in the following subsections:

8.1 Unexpected Finds

Residual hazards that may exist at the site would generally be expected to be detectable through visual or olfactory means. At this site, these types of hazards may include suspected friable types of asbestos such as rope or lagging, stained or odorous soils etc. The potential extent of the asbestos pipe identified in the northern section of the site is also unknown and there is a potential that the proposed works could disturb this pipe. The procedure to be followed in the event of an unexpected find is presented below:

- In the event of an unexpected find, all work in the immediate vicinity should cease and the remediation contractor must contact the validation consultant and the client/project manager;
- Temporary barricades should be erected to isolate the area from access to workers;
- The validation consultant is to attend the site to inspect the find;
- The validation consultant is to adequately characterise the contamination and provide advice in relation to site management and remediation. In the event that remediation differs from that outlined in this RAP, an addendum RAP must be prepared in consultation with the project stakeholders and submitted to the consent authority; and
- Contamination is to be remediated and validated in accordance with the advice provided, and the results are to be included in the validation report.

Reference is to be made to the UFP attached in Appendix F.

8.2 Validation Failure for Excavate and Dispose

In the event of a validation failure during excavate and dispose, additional material is to be 'chased out' from the area that failed and disposed off-site, then the area re-validated. Due to the potential cost implications for disposal of additional materials, the client and project manager must be informed in the event of a validation failure, an estimate of the additional waste quantity must be provided, and approval must be sought from the client/project manager prior to any off-site disposal of waste.

8.3 Importation Failure for VENM or other Imported Materials

Where material to be imported onto the site does not meet the importation VAC, the material should not be imported. Alternative material must be sourced that meets the importation requirements.

8.4 Remediation Strategy Changes

Any material change to the proposed remediation strategy will require an addendum to or a revision of the RAP. This must not occur without appropriate consultation and approvals from the client/consent authority and other relevant parties.

9 SITE MANAGEMENT PLAN FOR REMEDIATION WORKS

The information outlined in this section of the RAP is for the remediation work only. The client and project manager must also make reference to the development consent for specific site management requirements for the overall development of the site.

9.1 Asbestos Management Plan

A construction/remediation-phase AMP must be prepared for the site and implemented for the site remediation and development works. The AMP must include the minimum PPE, WHS and other requirements outlined in the documents published by Safe Work Australia, WorkCover Authority of NSW, National Occupational Health and Safety Commission, and other relevant authorities as applicable. An asbestos removal control plan (ARCP) should be prepared by the remediation contractor and issued to SafeWork, and notification of asbestos removal is to be provided to SafeWork at least five days prior to commencement of works.

The client and project team must consider the need for a post-remediation AMP for the site to fulfil the obligations under Clause 429 of the Work Health and Safety Regulation (2017). The need for a post-remediation AMP must be assessed based on the outcome of the validation.

9.2 Interim Site Management

As previously recommended in the investigation reports, an interim AMP is to be prepared and implemented to manage asbestos occurrences associated with BH4 and the asbestos pipe.

9.3 Project Contacts

Emergency procedures and contact telephone numbers should be displayed in a prominent position at the site entrance gate and within the main site working areas. The contact details of key project personnel are summarised in the following table:

Table 9-1: Project Contacts

Role	Company	Contact Details
Client	Health Infrastructure	Katrina Walsh katrina.walsh@health.nsw.gov.au 0438 645 463
Project Manager	Capital Insight	Louise Coote louise.coote@capitalinsight.com.au 0429 400 404
Principal Contractor	To be appointed	-
Remediation Contractor	To be appointed	-
Validation Consultant	To be appointed	-

Certifier	To be appointed	-
NSW EPA	Pollution Line	131 555
Emergency Services	Ambulance, Police, Fire	000

9.4 Security

Appropriate fencing should be installed as required to secure the site and to isolate the remediation areas. Warning signs should be erected, which outline the PPE required for remediation work.

9.5 Timing and Sequencing of Remediation Works

The anticipated sequence of remediation works is outlined at the beginning of Section 6 of this RAP. Remediation and validation activities, including the data gap investigation, will occur concurrently with the demolition/development works to facilitate the implementation of the requirements under this RAP.

9.6 Site Soil and Water Management Plan

The remediation contractor should prepare a detailed soil and water management plan prior to the commencement of site works and this must consider the requirements of the AMP. Silt fences should be used to control the surface water runoff at all appropriate locations of the site and appropriate measures are to be implemented to manage soil/water disturbance to the satisfaction of the regulator/consent authority. Reference should be made to the DA approval conditions for further details.

All stockpiled materials should be placed within an erosion containment boundary with silt fences and sandbags employed to limit sediment movement. The containment area should be located away from drainage lines/low-points, gutters, stormwater pits and inlets and the site boundary. No liquid waste or runoff should be discharged to the stormwater or sewerage system without the approval of the appropriate authorities.

9.7 Noise and Vibration Control Plan

The guidelines for minimisation of noise on construction sites outlined in AS-2460 (2002)¹⁵ should be adopted. Other measures specified in the consent conditions should also be complied with. Noise producing machinery and equipment should only be operated between the hours approved by the consent authority (refer to DA approval).

All practicable measures should be taken to reduce the generation of noise and vibration to within acceptable limits. In the event that short-term noisy operations are necessary, and where these are likely to affect residences, notifications should be provided to the relevant authorities and the residents by the project manager, specifying the expected duration of the noisy works.

¹⁵ Australian Standard, (2002). AS2460: Acoustics - Measurement of the Reverberation Time in Rooms.

9.8 Dust Control Plan

All practicable measures should be taken to reduce dust emanating from the site. Factors that contribute to dust production are:

- Wind over a cleared surface;
- Wind over stockpiled material; and
- Movement of machinery in unpaved areas.

Visible dust should not be present at the site boundary. Measures to minimise the potential for dust generation include:

- Use of water sprays on unsealed or exposed soil surfaces;
- Covering of stockpiled materials and excavation faces (particularly during periods of site inactivity and/or during windy conditions) or alternatively the erection of hessian fences around stockpiled soil or large exposed areas of soil;
- Establishment of dust screens consisting of a 2m high shade cloth or similar material secured to a chain wire fence;
- Maintenance of dust control measures to keep the facilities in good operating condition;
- Stopping work during strong winds;
- Loading or unloading of dry soil as close as possible to stockpiles to prevent spreading of loose material around the development area; and
- Geofabric could be placed over exposed soils in the event that excavation is staged.

If stockpiles are to remain on-site or soil remains exposed for a period of longer than several days, dust monitoring should be undertaken at the site. If excessive dust is generated all site activities should cease until either wind conditions are more acceptable or a revised method of excavation/remediation is developed.

Dust is also produced during the transfer of material to and from the site. All material should be covered during transport and should be properly disposed of on delivery. No material is to be left in an exposed, unmonitored condition.

All equipment and machinery should be brushed or washed down before leaving the site to limit dust and sediment movement off-site. In the event of prolonged rain and lack of paved areas all vehicles should be washed down prior to exit from the site, and any soil or dirt on the wheels of the vehicles removed. Water used to clean the vehicles should be collected and tested prior to appropriate disposal under the relevant waste classification guidelines.

Reference is also to be made to the AMP in this regard.

9.9 Dewatering

Temporary dewatering is not anticipated to be required as part of the scope of remediation works. If a rain event occurs during the construction, this water should be managed appropriately on site in accordance with the remediation contractor's soil and water management plan. This water should not be pumped to stormwater or sewer unless a prior application is made and this is approved by the relevant authorities.

9.10 Air Monitoring

Air monitoring details must be outlined as part of the AMP to be prepared for the construction/remediation works. Air monitoring must only be carried out by personnel registered and accredited by NATA (National Association of Testing Authorities). Filter analysis must only be carried out within a NATA certified laboratory. The monitoring results must conform to the requirements of the NOHSC Guidance note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres 2nd Edition [NOHSC:3003 (2005)].

A monitoring program will be used to assess whether the control procedures being applied are satisfactory and that criteria for airborne asbestos fibre levels are not being exceeded. The following levels will be used as action criteria during the air monitoring:

- <0.01 Fibres/ml: Work procedures deemed to be successful;
- 0.01 to 0.02 Fibres/ml: Inspection of the site and review of procedures; and
- >0.02 Fibres/ml: Stop work, inspection of the site, review of procedures, clean-up, rectification works where required and notify the relevant regulator.

9.11 Odour Control Plan

All activities undertaken at the site should be completed in a manner that minimises emissions of smoke, fumes and vapour into the atmosphere and any odours arising from the works or stockpiled material should be controlled. Control measures may include:

- Maintenance of construction equipment so that exhaust emissions comply with the Clean Air Regulations issued under the POEO Act 1997;
- Demolition materials and other combustible waste should not be burnt on site;
- The spraying of a suitable proprietary product to suppress any odours that may be generated by excavated materials; and
- Use of protective covers (e.g. builder's plastic).

All practicable measures should be taken to reduce fugitive emissions emanating from the site so that associated odours do not constitute a nuisance and that the ambient air quality is not adversely impacted. The following odour management plan should be implemented to limit the exposure of site personnel and surrounding residents to unpleasant odours:

- Excavation and stockpiling of material should be scheduled during periods with low winds if possible;
- A suitable proprietary product could be sprayed on material during excavation and following stockpiling to reduce odours (subject to an appropriate assessment of the product by the validation consultant);
- All complaints from workers and neighbours should be logged and a response provided. Work should be rescheduled as necessary to minimise odour problems;
- The site foreman should consider the following odour control measures as outlined in NEPM:
 - reduce the exposed surface of the odorous materials;
 - time excavation activities to reduce off-site nuisance (particularly during strong winds); and
 - > cover exposed excavation faces overnight or during periods of low excavation activity.
- If continued complaints are received, alternative odour management strategies should be considered and implemented.

9.12 WHS Plan

A site specific WHS plan must be prepared by the remediation contractor for all work to be undertaken at the site. The WHS plan should meet all the requirements outlined in SafeWork NSW WHS regulations.

As a minimum requirement, personnel must wear appropriate protective clothing, including long sleeve shirts, long trousers, steel cap boots and hard hats. Additional asbestos-related PPE will be required and this will be specified in the AMP. Washroom and lunchroom facilities should also be provided to allow workers to remove potential contamination from their hands and clothing prior to eating or drinking.

9.13 Waste Management

Prior to commencement of remedial works and excavation for the proposed development, the remediation contractor should develop a waste management plan to minimise the amount of waste produced from the site and promote recycling of building materials such as concrete pavement to the extent practicable.

9.14 Incident Management Contingency

The validation consultant should be contacted if any unexpected conditions are encountered at the site. This should enable the scope of remedial/validation works to be adjusted as required. Similarly, if any incident occurs at the site (e.g. a fuel spill during refuelling of machinery), the validation consultant should be advised to assess potential impacts on contamination conditions and the remediation/validation timetable.

9.15 Hours of Operation

Hours of operation should be between those approved by the consent authority under the development approval process (refer to the DA approval).

9.16 Community Consultation and Complaints

The remediation contractor should provide details for managing community consultation and complaints within their construction plans.

10 CONCLUSIONS

Previous investigations have identified bonded asbestos (ACM) in soil at one location (BH4) at a concentration that exceeded the adopted SAC. Additionally, the DSI identified various data gaps due to access constraints. Therefore, this RAP has been prepared to outline remediation of localised impacts of asbestos-contaminated fill at BH4, and also the contingencies for additional remediation and requirements for pre-remediation data gap investigation. The pre-remediation investigation will be used to establish whether contamination is present in previously inaccessible areas that requires remediation and implementation of the contingencies outlined in this RAP.

The proposed remediation strategy for asbestos-contaminated fill in the vicinity of BH4 includes excavation and disposal of the excavated material to a licensed landfill facility. The extent of remediation will be confirmed via the validation process.

The remedial contingencies in this RAP for other contaminated areas (if identified), include 'excavation and off-site disposal' of contaminated soil, or 'cap and containment' of contaminated soil. Depending on the nature and extent of such remediation, we consider that the 'excavation and off-site disposal' option would most likely be applicable for small quantities of contaminated soils, and the 'cap and containment' option would be applicable for larger quantities of contaminated soils. Capping and containing contaminated soils on site would trigger a requirement for long-term management of the site via an EMP. The RAP also includes validation requirements for imported materials.

We are of the opinion that the site can be made suitable for the proposed development via the implementation of this RAP. The remediation and validation can be staged where required, to align with the development staging. A validation report is to be prepared on completion of any remediation/validation activities and submitted to the consent authority to demonstrate that the site is suitable for the proposed use following completion of remediation/validation. If contaminated material is capped on site (e.g. if the capping contingency needs to be implemented), a long-term EMP will also be prepared as part of the validation documentation.

The RAP has met the objectives outlined in Section 1.1.

10.1 Remediation Category

JKE has undertaken a preliminary assessment of the remediation Category with regards to the Category 1 remediation triggers in Clause 4.8 of SEPP Resilience and Hazards 2021. We consider that as the site in its entirety is heritage listed under the Temora Local Environment Plan (LEP) 2010, the Category 1 triggers have been met and therefore we have assessed that the remediation falls within Category 1. This should be confirmed by the client's expert planner.

10.2 Regulatory Requirements

The regulatory requirements applicable for the remediation are discussed in the following table:

Table 10-1: Regulatory Requirement

Guideline / Legislation / Policy	Applicability
SEPP Resilience and Hazards 2021	A notice of completion of remediation work is to be given to the local council within 30 days of completion of the work, in accordance with Clauses 4.14 and 4.15 of SEPP Resilience and Hazards 2021.
POEO Act 1997	Section 143 of the POEO Act 1997 states that if waste is transported to a place that cannot lawfully be used as a waste facility for that waste, then the transporter and owner of the waste are each guilty of an offence. The transporter and owner of the waste have a duty to ensure that the waste is disposed of in an appropriate manner.
	Appropriate waste tracking is required for all waste that is disposed off-site.
	Activities should be carried out in a manner which does not result in the pollution of waters.
POEO (Waste) Regulation 2014	Part 7 of the POEO Waste Regulation 2014 set outs the requirements for the transportation and management of asbestos waste and Clause 79 of the POEO Waste Regulation requires waste transporters to provide information to the NSW EPA regarding the movement of any load in NSW of more than 10 square meters of asbestos sheeting, or 100 kilograms of asbestos waste. To fulfil these legal obligations, asbestos waste transporters must use the EPA-endorsed waste tracking system.
Work Health and Safety Regulation (2017)	Sites with asbestos become a 'workplace' when work is carried out there and require a register and AMP. Appropriate SafeWork NSW notification will be required for licensed (Class B) asbestos removal works or handling. Reference is to be made to the remediation/construction-phase AMP for further details regarding the regulatory requirements for managing asbestos during remediation.
SafeWork NSW Code of Practice: How to manage and control asbestos in the workplace (2019)	Sites with asbestos become a 'workplace' when work is carried out there and require a register and AMP. Appropriate SafeWork NSW notification will be required for licensed asbestos removal works or handling (e.g. Class B for non-friable asbestos removal).
NSW EPA Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997	The requirement to notify the EPA should be assessed as part of the site validation process. The need to notify will be largely dependent on the asbestos air monitoring results during remediation, where applicable. In our opinion the results obtained by JKE to date do not trigger a need to notify the EPA.

11 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site.
 These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or land use. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Investigation Limitations

Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Investigation Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site investigation is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

Appendix A: Report Figures

AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM

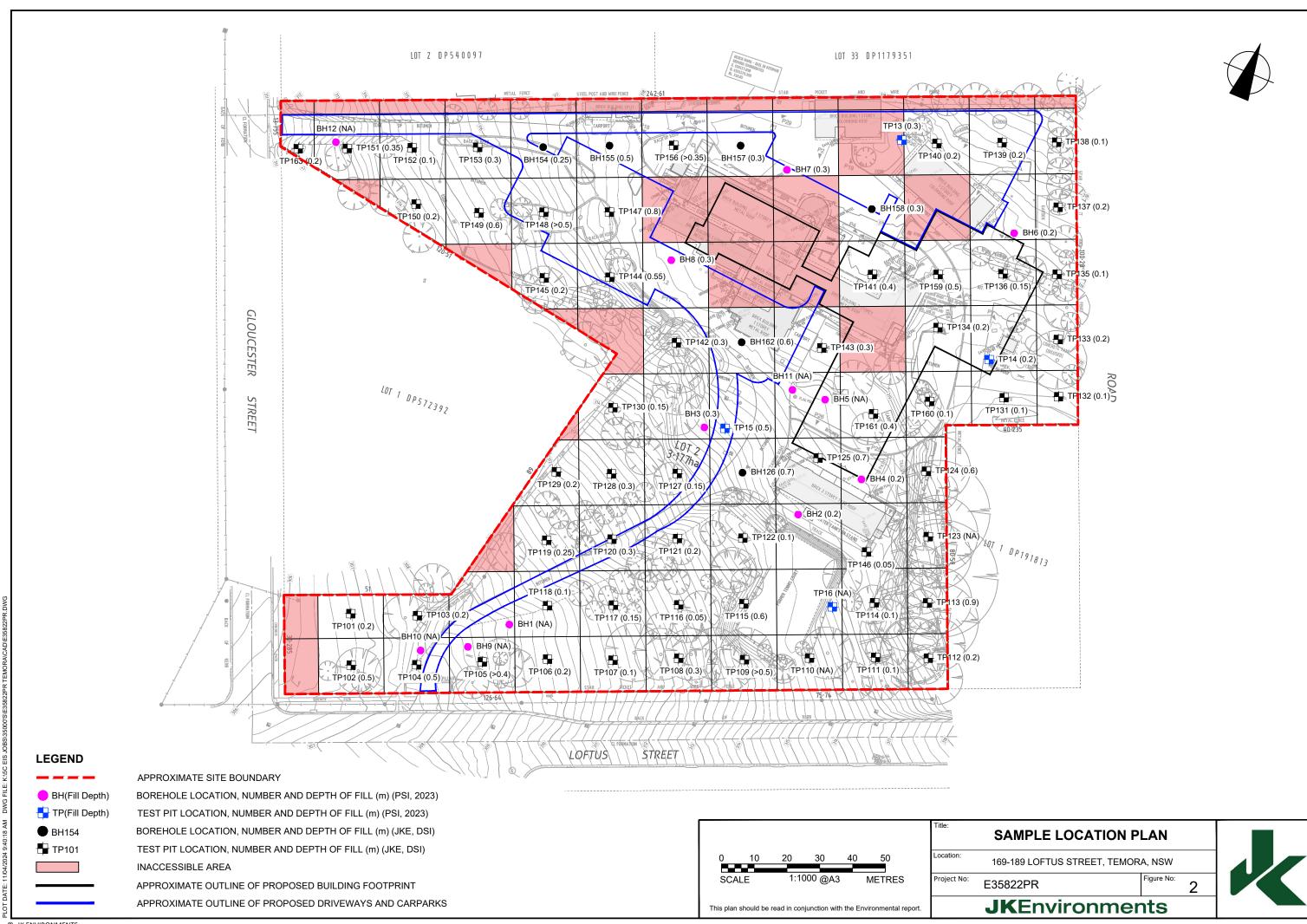
Title:

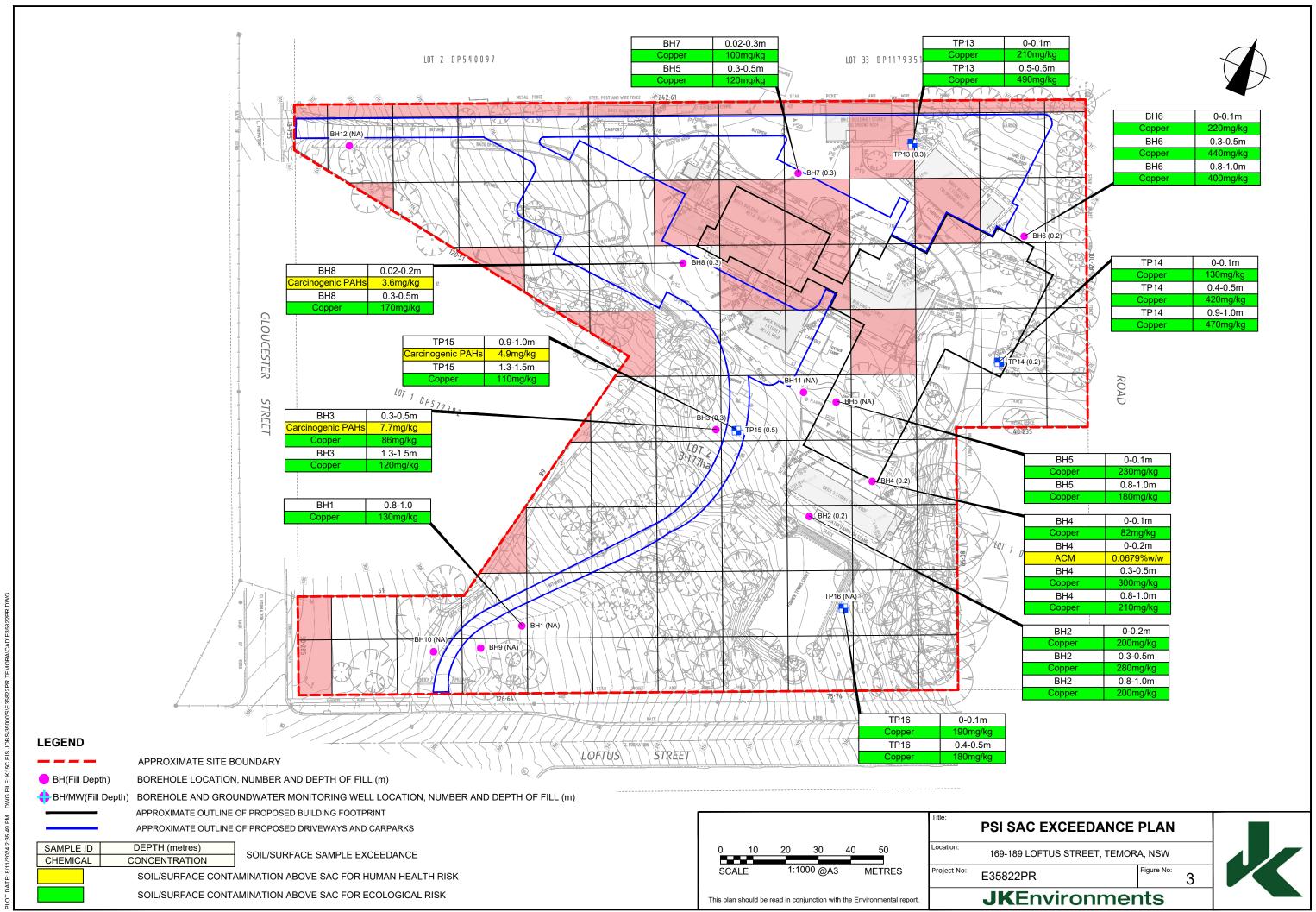
SITE LOCATION PLAN

Location:

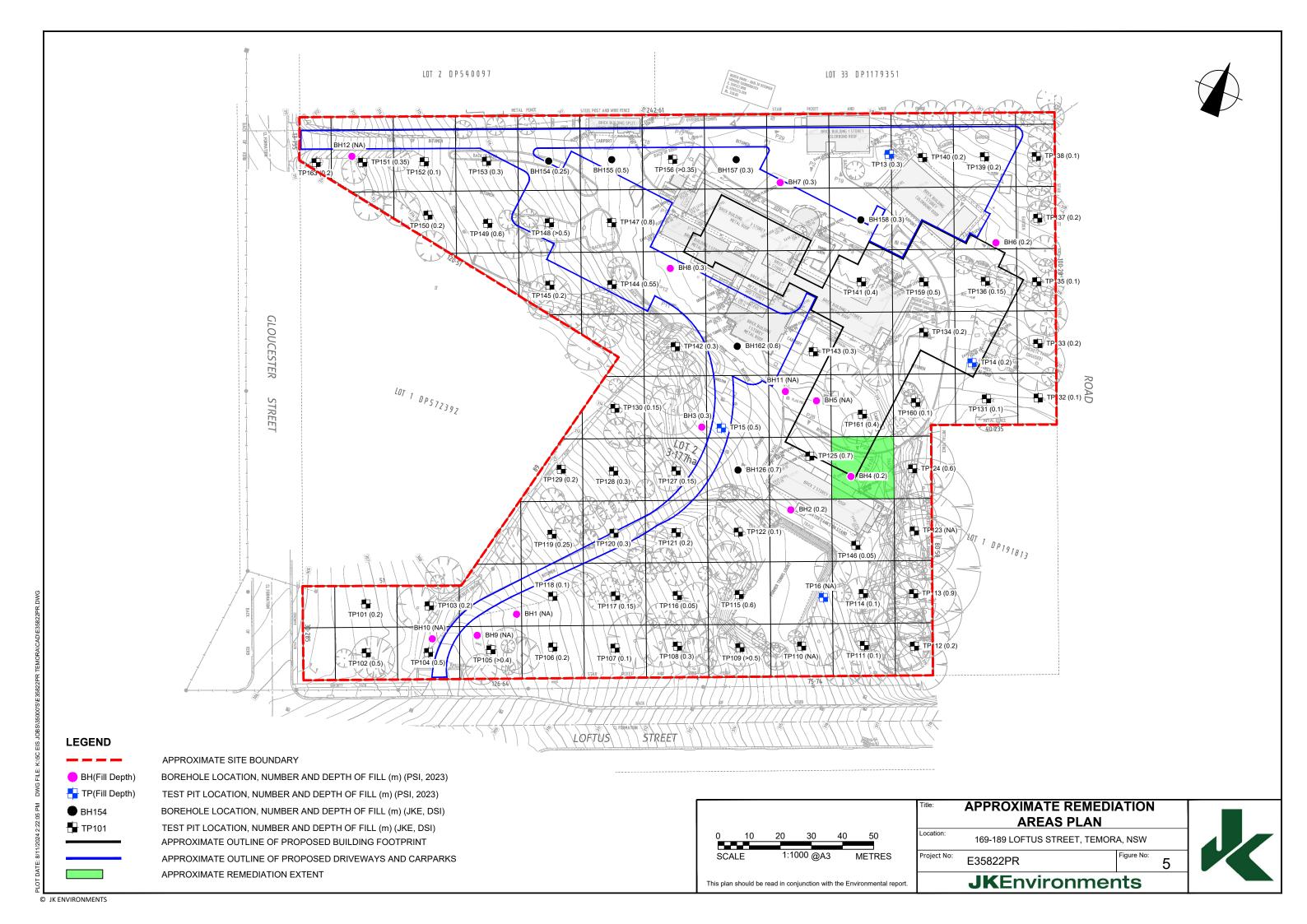
169-189 LOFTUS STREET, TEMORA, NSW

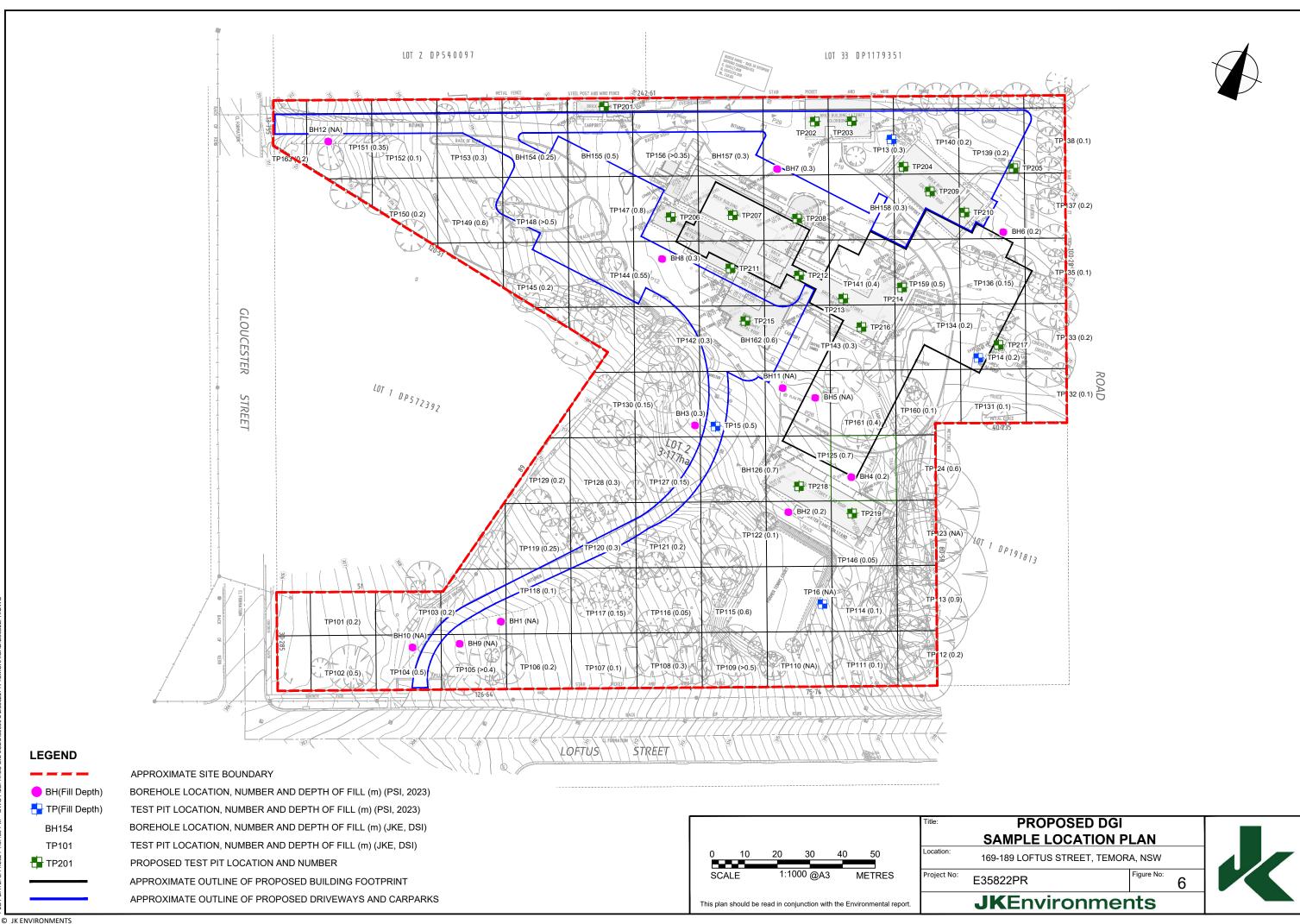
Project No:

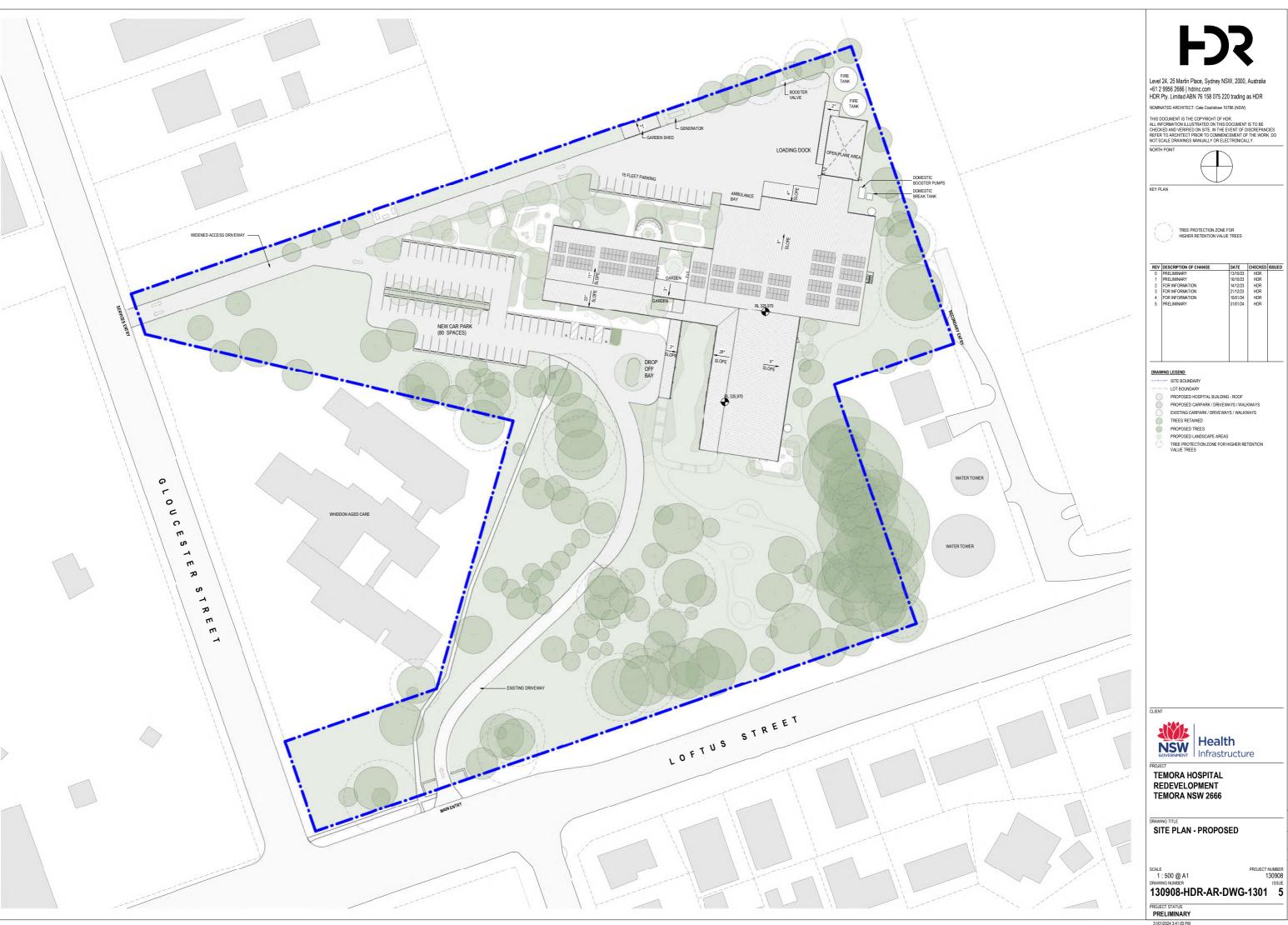

E35822PR


Figure No:

1


This plan should be read in conjunction with the Environmental report.





Appendix B: Selected Development Plans

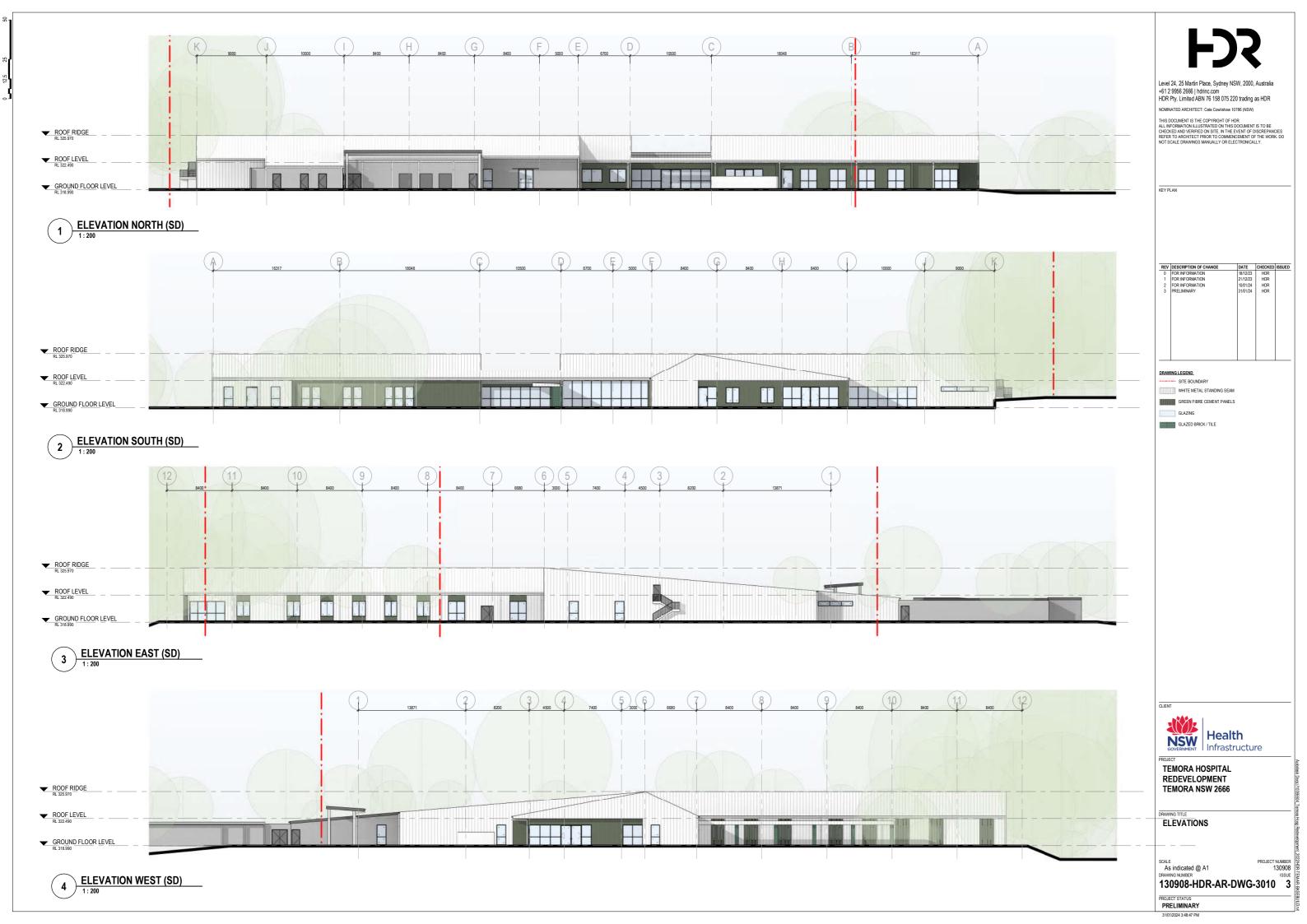
Level 24, 25 Martin Place, Sydney NSW, 2000, Australia +61 2 9956 2666 | hdrinc.com HDR Pty. Limited ABN 76 158 075 220 trading as HDR

NOMINATED ARCHITECT: Cate Cowlishaw 10786 (NSW)

THIS DOCUMENT IS THE COPYRIGHT OF HDR
ALL INFORMATION LLUSTRATED ON THIS DOCUMENT IS TO BE
CHECKED AND VERRIELD ON SITE. IN THE EVENT OF DISCREPANCIES
REFER TO ABOUTETED FROM TO COMMENCEMENT OF THE WORK. DO
NOT SCALE DRAWINGS MANUALLY OR ELECTRONICALLY.

TREE PROTECTION ZONE FOR HIGHER RETENTION VALUE TREES

KEV	DESCRIPTION OF CHANGE	DATE	CHECKED	ISSUED
0	PRELIMINARY	13/10/23	HDR	
1	PRELIMINARY	16/10/23	HDR	
2	FOR INFORMATION	14/12/23	HDR	
3	FOR INFORMATION	21/12/23	HDR	
4	FOR INFORMATION	10/01/24	HDR	
5	PRELIMINARY	31/01/24	HDR	


- LOT BOUNDARY

PROPOSED CARPARK / DRIVEWAYS / WALKWAYS
EXISTING CARPARK / DRIVEWAYS / WALKWAYS

TEMORA HOSPITAL REDEVELOPMENT **TEMORA NSW 2666**

SITE PLAN - PROPOSED

PROJECT NUMBER 130908

Level 24, 25 Martin Place, Sydney NSW, 2000, Australia +61 2 9956 2666 | hdrinc.com HDR Pty. Limited ABN 76 158 075 220 trading as HDR

NOMINATED ARCHITECT: Cate Cowlishaw 10786 (NSW)

THIS DOCUMENT IS THE COPYRIGHT OF HDR.
ALL INFORMATION LLUSTRATED ON THIS DOCUMENT IS TO BE
CHECKED AND VERRIFED ON SITE. IN THE EVENT OF DISCREPANCIES
REFER TO ARCHITECT PRIOR TO COMMENCEMENT OF THE WORK. DO
NOT SCALE DRAWINGS MANUALLY OR ELECTRONICALLY.

PRELIMINARY
PRELIMINARY
FOR INFORMATION
FOR INFORMATION
PRELIMINARY

TEMORA HOSPITAL
REDEVELOPMENT
TEMORA NSW 2666

GENERAL ARRANGEMENT SECTIONS - 1

SCALE 1:200 @ A1

PROJECT NUMBER

130908-HDR-AR-DWG-3111 4

Level 24, 25 Martin Place, Sydney NSW, 2000, Australia +61 2 9956 2666 | hdrinc.com HDR Pty. Limited ABN 76 158 075 220 trading as HDR

NOMINATED ARCHITECT: Cate Cowlishaw 10786 (NSW)

THIS DOCUMENT IS THE COPYRIGHT OF HDR.
ALL INFORMATION LLUSTRATED ON THIS DOCUMENT IS TO BE
CHECKED AND VERRIFED ON SITE. IN THE EVENT OF DISCREPANCIES
REFER TO ARCHITECT PRIOR TO COMMENCEMENT OF THE WORK. DO
NOT SCALE DRAWINGS MANUALLY OR ELECTRONICALLY.

REV	DESCRIPTION OF CHANGE	DATE	CHECKED	ISSUED
0	PRELIMINARY	13/10/23	HDR	
1	PRELIMINARY	16/10/23	HDR	
2	FOR INFORMATION	14/12/23	HDR	
3	FOR INFORMATION	21/12/23	HDR	
4	PRELIMINARY	31/01/24	HDR	
	I		1	

TEMORA HOSPITAL
REDEVELOPMENT
TEMORA NSW 2666

GENERAL ARRANGEMENT SECTIONS - 2

SCALE PROJECT NUMBER 1:200 @ A1 130908 PO PROJECT NUMBER 1:30908 PO PR

Appendix C: Laboratory Summary Tables and Logs

PSI Laboratory Summary Tables

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC: Ambient Background Concentration PCBs: Polychlorinated Biphenyls

ACM: Asbestos Containing Material PCE: Perchloroethylene (Tetrachloroethylene or Teterachloroethene)

ADWG: AustralianDrinking Water Guidelines

Asbestos Fines

pH of filtered 1:20, 1M KCL extract, shaken overnight

pHox: pH of filtered 1:20 1M KCl after peroxide digestion

ANZG Australian and New Zealand Guidelines PQL: Practical Quantitation Limit

B(a)P: Benzo(a)pyrene **RS:** Rinsate Sample

CEC:Cation Exchange CapacityRSL:Regional Screening LevelsCRC:Cooperative Research CentreRSW:Restricted Solid WasteCT:Contaminant ThresholdSAC:Site Assessment Criteria

Ells: Ecological Investigation Levels SCC: Specific Contaminant Concentration
ESLs: Ecological Screening Levels Sc.: Chromium reducible sulfur

ESLs: Ecological Screening Levels
 FA: Fibrous Asbestos
 Groundwater Investigation Levels
 SSA: Site Specific Assessment

GSW: General Solid Waste SSHSLs: Site Specific Health Screening Levels

HILS: Health Investigation Levels TAA: Total Actual Acidity in 1M KCL extract titrated to pH6.5

HSLs: Health Screening Levels TB: Trip Blank

HSL-SSA: Health Screening Level-SiteSpecific Assessment **TCA:** 1,1,1 Trichloroethane (methyl chloroform)

kg/L kilograms per litre TCE: Trichloroethylene (Trichloroethene)
NA: Not Analysed TCLP: Toxicity Characteristics Leaching Procedure
NC: Not Calculated TPA: Total Potential Acidity, 1M KCL peroxide digest

NEPM: National Environmental Protection Measure TS: Trip Spike

NHMRC: National Health and Medical Research Council TRH: Total Recoverable Hydrocarbons

NL: Not Limiting TSA: Total Sulfide Acidity (TPA-TAA)

NSL: No Set Limit

OCP: Upper Level Confidence Limit on Mean Value
USEPA United States Environmental Protection Agency

OPP: Organophosphorus Pesticides **VOCC:** Volatile Organic Chlorinated Compounds

PAHs: Polycyclic Aromatic Hydrocarbons WHO: World Health Organisation

%w/w: weight per weight
ppm: Parts per million

Table Specific Explanations:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also referred to as the B(a)P Toxic Equivalence Quotient (TEQ).

EIL/ESL Table:

- ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with low traffic have been quoted).

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenthion, Fenitrothion, Ethion, Malathion, Methidathion and Parathion Methyl.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in μg/L.

TABLE S1

SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

HIL-A: 'Residential with garden/accessible soils; children's day care centers; preschools; and primary schools'

						HEAVY I	METALS					PAHs			ORGANOCHL	ORINE PESTI	CIDES (OCPs)			OP PESTICIDES (OPPs)		
All data in mg/kg unle	ess stated othe	rwise	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	Carcinogenic PAHs	НСВ	Endosulfan	Methoxychlor	Aldrin & Dieldrin	Chlordane	DDT, DDD & DDE	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
PQL - Envirolab Servic	ces		4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
Site Assessment Crite	eria (SAC)		100	20	100	6000	300	40	400	7400	300	3	10	270	300	6	50	240	6	160	1	Detected/Not Detected
Sample Reference	Sample Depth	Sample Description																				
BH1	0-0.3	Silty Clay	<4	<0.4	37	70	7	<0.1	10	22	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH1 - [LAB_DUP]	0-0.3	Laboratory Duplicate	<4	<0.4	38	70	9	<0.1	10	25	0.55	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH1	0.8-1.0	XW Andersite	<4	<0.4	62	130	9	<0.1	14	31	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH2	0-0.2	F: Gravelly Sandy Clay	6	<0.4	38	200	8	<0.1	11	36	6.9	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH2	0.3-0.5	Sandy Silty Clay	6	<0.4	91	280	5	<0.1	18	37	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH2	0.8-1.0	Silty Clay	6	<0.4	63	200	6	<0.1	13	30	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH3	0-0.1	F: Silty Clay	7	<0.4	23	57	12	<0.1	9	24	0.64	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
вн3	0.3-0.5	F: Sandy Silty Clay	8	<0.4	47	86	15	0.2	11	33	85	7.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
вн3	1.3-1.5	Sandy Silty Clay	4	<0.4	72	120	9	<0.1	12	22	3.3	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH4	0-0.1	F: Silty Clay	5	<0.4	30	82	28	<0.1	7	53	0.66	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH4 - [LAB_DUP]	0-0.1	Laboratory Duplicate	5	<0.4	28	80	26	<0.1	6	53	0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH4	0.3-0.5	Sandy Silty Clay	7	<0.4	18	300	3	<0.1	11	31	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH4	0.8-1.0	XW Andersite	6	<0.4	16	210	2	<0.1	9	24	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH5	0-0.1	Silty Clay	9	<0.4	26	230	13	<0.1	9	30	2.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH5	0.8-1.0	Silty Clay	4	<0.4	52	180	7	<0.1	12	20	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH6	0-0.1	F: Silty Clay	<4	<0.4	22	220	17	<0.1	9	54	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH6	0.3-0.5	Sandy Silty Clay	<4	<0.4	19	440	3	<0.1	10	51	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH6	0.8-1.0	XW Andersite	<4	<0.4	16	400	1	<0.1	9	55	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH7	0.02-0.3	F: Gravelly Silty Sand	7	<0.4	36	94	24	<0.1	9	36	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH7 - [LAB DUP]	0.02-0.3	Laboratory Duplicate	6	<0.4	51	100	20	<0.1	11	34	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA NA
BH7	0.3-0.5	F: Silty Sand	7	<0.4	66	120	10	0.6	13	29	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH8	0.02-0.2	F: Silty Sand	<4	<0.4	13	12	7	<0.1	2	7	27	3.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH8	0.3-0.5	Sandy Silty Clay	<4	<0.4	53	170	7	<0.1	15	42	3.3	<0.5	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA
TP13	0-0.1	F: Silty Clay	5	<0.4	20	210	22	0.1	8	59	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP13	0.5-0.6	Silty Clay	7	<0.4	24	490	4	<0.1	11	28	<0.05	<0.5	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA NA
TP14	0-0.1	F: Silty Clay	15	<0.4	31	99	120	0.1	3	88	1.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP14	0.4-0.5	Silty Clay	<4	<0.4	17	420	6	<0.1	10	57	0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NOT Detected NA
TP14	0.9-1.0	XW Andersite	<4	<0.4	10	470	2	<0.1	10	47	<0.05	<0.5	NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA
TP15	0-0.1	F: Silty Clay	6	<0.4	21	34	12	<0.1	7	30	0.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP15 - [LAB DUP]	0-0.1	Laboratory Duplicate	5	<0.4	19	29	12	<0.1	7	30	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NOI Detected NA
TP15	0.9-1.0	F: Sandy Silty Clay	7	<0.4	24	32	14	<0.1	5	11	43	4.9	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP15	1.3-1.5	Silty Clay	<4	<0.4	52	110	7	0.7	9	18	<0.05	<0.5	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA
TP16	0-0.1		10	<0.4	56	190	25	<0.1	14	61	1.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP16	0.4-0.5	Silty Clay Silty Clay	5	<0.4	74	180	4	<0.1	15	27	<0.05	<0.5	NA	VA.1	NA	NA	NA	NA	NA	NA	NA	Not Detected NA
	0.4-0.5		10			190	25			66			<0.1				<0.1				<0.1	
SDUP1		Duplicate of TP16		<0.4	55			<0.1	14		1.7	<0.5		<0.1	<0.1	<0.1		<0.1	<0.1	<0.1		NA NA
SDUP2	0-0.1	Duplicate of TP15	6	<0.4	20	31	12	<0.1	7	29	0.1	<0.5	NA c0.1	NA c0.1	NA co.1	NA c0.1	NA c0.1	NA c0.1	NA co.1	NA -0.1	NA c0.1	NA NA
SDUP3	0-0.1	Duplicate of TP14	11	<0.4	22	130	170	<0.1	7	140	0.86	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA NA
SDUP4 - [LAB DUP]	0-0.1	Duplicate of TP13	5	<0.4	16	160	24	<0.1		67	0.3	<0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
,	0-0.1	Laboratory Duplicate	5	<0.4	15	170	19	<0.1	7	60	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA Detected
BH4-FCF1	0-0.2	Fragment	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Detected
BH4-FCF2	0-0.2	Fragment	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
Total Number of Sa	mples		39	39	39	39	39	39	39	39	38	38	20	20	20	20	20	20	20	20	20	16
Maximum Value	pics		15	<pql< td=""><td>91</td><td>490</td><td>170</td><td>0.7</td><td>18</td><td>140</td><td>85</td><td>7.7</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>20</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>20</td><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	91	490	170	0.7	18	140	85	7.7	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>20</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>20</td><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>20</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>20</td><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>20</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>20</td><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>20</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>20</td><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<>	20	<pql< td=""><td><pql< td=""><td><pql< td=""><td>20</td><td>Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>20</td><td>Detected</td></pql<></td></pql<>	<pql< td=""><td>20</td><td>Detected</td></pql<>	20	Detected

Concentration above the SAC Concentration above the PQL

VALUE Bold

Copyright JK Environments

ADIE C

SOIL LABORATORY RESULTS COMPARED TO HSLs All data in mg/kg unless stated otherwise

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measurement
PQL - Envirolab Servi	ces				25	50	0.2	0.5	1	1	1	ppm
NEPM 2013 HSL Land	Use Catego	ry					HSL-A/B: LO	OW/HIGH DENSITY	RESIDENTIAL			
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category								
BH1	0-0.3	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.5
BH1 - [LAB_DUP]	0-0.3	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
BH1	0.8-1.0	XW Andersite	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
BH2	0-0.2	F: Gravelly Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.3
BH2	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.9
BH2	0.8-1.0	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.8
BH3	0-0.1	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.6
BH3	0.3-0.5	F: Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	2	0.7
BH3	1.3-1.5	Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.5
BH4	0-0.1	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	2.2
BH4 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
BH4	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	2
BH4	0.8-1.0	XW Andersite	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	3.8
BH5	0-0.1	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.6
BH5	0.8-1.0	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.6
BH6	0-0.1	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
BH6	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.1
BH6	0.8-1.0	XW Andersite	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.1
BH7	0.02-0.3	F: Gravelly Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.8
BH7 - [LAB_DUP]	0.02-0.3	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
BH7	0.3-0.5	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	2
BH8	0.02-0.2	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH8	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
TP13	0-0.1	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.6
TP13	0.5-0.6	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.3
TP14	0-0.1	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1
TP14	0.4-0.5	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.5
TP14	0.9-1.0	XW Andersite	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.1
TP15	0-0.1	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
TP15 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
TP15	0.9-1.0	F: Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
TP15	1.3-1.5	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.5
TP16	0-0.1	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.2
TP16	0.4-0.5	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.2
SDUP1	0-0.1	Duplicate of TP16	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
SDUP2	0-0.1	Duplicate of TP15	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
SDUP3	0-0.1	Duplicate of TP14	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
SDUP4	0-0.1	Duplicate of TP13	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
Tabal Managhan (C					38	38	38	38	38	38	20	30
Total Number of Sa	impies				38 <pql< td=""><td><pql< td=""><td>38 <pql< td=""><td><pql< td=""><td>SS SPOL</td><td><pql< td=""><td>38</td><td>3.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>38 <pql< td=""><td><pql< td=""><td>SS SPOL</td><td><pql< td=""><td>38</td><td>3.8</td></pql<></td></pql<></td></pql<></td></pql<>	38 <pql< td=""><td><pql< td=""><td>SS SPOL</td><td><pql< td=""><td>38</td><td>3.8</td></pql<></td></pql<></td></pql<>	<pql< td=""><td>SS SPOL</td><td><pql< td=""><td>38</td><td>3.8</td></pql<></td></pql<>	SS SPOL	<pql< td=""><td>38</td><td>3.8</td></pql<>	38	3.8
Maximum Value					<pql< td=""><td>< PUL</td><td><pql< td=""><td>< PQL</td><td>< PQL</td><td><pql< td=""><td>Z</td><td>3.8</td></pql<></td></pql<></td></pql<>	< PUL	<pql< td=""><td>< PQL</td><td>< PQL</td><td><pql< td=""><td>Z</td><td>3.8</td></pql<></td></pql<>	< PQL	< PQL	<pql< td=""><td>Z</td><td>3.8</td></pql<>	Z	3.8

Concentration above the SAC Concentration above the PQL VALUE Bold

The guideline corresponding to the concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below

HSL SOIL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
BH1	0-0.3	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH1 - [LAB DUP]	0-0.3	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH1	0.8-1.0	XW Andersite	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH2	0-0.2	F: Gravelly Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH2	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH2	0.8-1.0	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH3	0-0.1	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH3	0.3-0.5	F: Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH3	1.3-1.5	Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4	0-0.1	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4	0.8-1.0	XW Andersite	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH5	0-0.1	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH5	0.8-1.0	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6	0-0.1	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6	0.8-1.0	XW Andersite	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7	0.02-0.3	F: Gravelly Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7 - [LAB DUP]	0.02-0.3	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7	0.3-0.5	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH8	0.02-0.2	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH8	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP13	0-0.1	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP13	0.5-0.6	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP14	0-0.1	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP14	0.4-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP14	0.9-1.0	XW Andersite	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP15	0-0.1	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP15 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP15	0.9-1.0	F: Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP15	1.3-1.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP16	0-0.1	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP16	0.4-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP1	0-0.1	Duplicate of TP16	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP2	0-0.1	Duplicate of TP15	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP3	0-0.1	Duplicate of TP14	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP4	0-0.1	Duplicate of TP13	0m to <1m	Sand	45	110	0.5	160	55	40	3

TABLE S3
SOIL LABORATORY RESULTS COMPARED TO MANAGEMENT LIMITS
All data in mg/kg unless stated otherwise

			C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4
QL - Envirolab Serv	ricos		25	50	100	100
NEPM 2013 Land Us				SIDENTIAL, PARKLAND		
Sample Reference		Soil Texture	112	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. a. obz.e o. z. o.	7.02
BH1	0-0.3	Coarse	<25	<50	<100	<100
BH1 - [LAB_DUP]	0-0.3	Coarse	<25	<50	<100	<100
BH1	0.8-1.0	Coarse	<25	<50	<100	<100
BH2	0-0.2	Coarse	<25	<50	<100	<100
BH2	0.3-0.5	Coarse	<25	<50	<100	<100
BH2	0.8-1.0	Coarse	<25	<50	<100	<100
BH3	0-0.1	Coarse	<25	<50	130	230
BH3	0.3-0.5	Coarse	<25	<50	320	120
BH3	1.3-1.5	Coarse	<25	<50	<100	<100
BH4	0-0.1	Coarse	<25	<50	<100	<100
BH4 - [LAB DUP]	0-0.1	Coarse	<25	<50	<100	<100
BH4	0.3-0.5	Coarse	<25	<50	<100	<100
BH4	0.8-1.0	Coarse	<25	<50	<100	<100
BH5	0-0.1	Coarse	<25	<50	<100	<100
BH5	0.8-1.0	Coarse	<25	<50	<100	<100
BH6	0-0.1	Coarse	<25	<50	<100	<100
BH6	0.3-0.5	Coarse	<25	<50	<100	<100
BH6	0.8-1.0	Coarse	<25	<50	<100	<100
BH7	0.02-0.3	Coarse	<25	<50	<100	<100
BH7 - [LAB_DUP]	0.02-0.3	Coarse	<25	<50	<100	<100
BH7	0.3-0.5	Coarse	<25	<50	<100	<100
BH8	0.02-0.2	Coarse	<25	<50	<100	<100
BH8	0.3-0.5	Coarse	<25	<50	<100	<100
TP13	0.5 0.5	Coarse	<25	<50	<100	<100
TP13	0.5-0.6	Coarse	<25	<50	<100	<100
TP14	0.5 0.0	Coarse	<25	<50	<100	<100
TP14	0.4-0.5	Coarse	<25	<50	<100	<100
TP14	0.9-1.0	Coarse	<25	<50	<100	<100
TP15	0.0.1	Coarse	<25	<50	<100	<100
TP15 - [LAB DUP]	0-0.1	Coarse	<25	<50	<100	<100
TP15	0.9-1.0	Coarse	<25	<50	<100	<100
TP15	1.3-1.5	Coarse	<25	<50	<100	<100
TP16	0-0.1	Coarse	<25	<50	<100	<100
TP16	0.4-0.5	Coarse	<25	<50	<100	<100
SDUP1	0-0.1	Coarse	<25	<50	<100	<100
SDUP2	0-0.1	Coarse	<25	<50	<100	<100
SDUP3	0-0.1	Coarse	<25	<50	<100	<100
SDUP4	0-0.1	Coarse	<25	<50	<100	<100
32314	3 3.1	COUISC	-23	.50	-200	1100
Total Number of Sa	mples		38	38	38	38
Maximum Value			<pql< td=""><td><pql< td=""><td>320</td><td>230</td></pql<></td></pql<>	<pql< td=""><td>320</td><td>230</td></pql<>	320	230
			4	4	520	200

MANAGEMENT LIMIT ASSESSMENT CRITERIA

Sample Reference	Camala Danth	Soil Texture	C ₆ -C ₁₀ (F1) plus	>C ₁₀ -C ₁₆ (F2) plus	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
Sample Reference	Sample Depth	3011 Texture	BTEX	napthalene	>C ₁₆ -C ₃₄ (13)	2C34-C40 (14)
BH1	0-0.3	Coarse	700	1000	2500	10000
BH1 - [LAB_DUP]	0-0.3	Coarse	700	1000	2500	10000
BH1	0.8-1.0	Coarse	700	1000	2500	10000
BH2	0-0.2	Coarse	700	1000	2500	10000
BH2	0.3-0.5	Coarse	700	1000	2500	10000
BH2	0.8-1.0	Coarse	700	1000	2500	10000
BH3	0-0.1	Coarse	700	1000	2500	10000
BH3	0.3-0.5	Coarse	700	1000	2500	10000
BH3	1.3-1.5	Coarse	700	1000	2500	10000
BH4	0-0.1	Coarse	700	1000	2500	10000
BH4 - [LAB_DUP]	0-0.1	Coarse	700	1000	2500	10000
BH4	0.3-0.5	Coarse	700	1000	2500	10000
BH4	0.8-1.0	Coarse	700	1000	2500	10000
BH5	0-0.1	Coarse	700	1000	2500	10000
BH5	0.8-1.0	Coarse	700	1000	2500	10000
BH6	0-0.1	Coarse	700	1000	2500	10000
BH6	0.3-0.5	Coarse	700	1000	2500	10000
BH6	0.8-1.0	Coarse	700	1000	2500	10000
BH7	0.02-0.3	Coarse	700	1000	2500	10000
BH7 - [LAB_DUP]	0.02-0.3	Coarse	700	1000	2500	10000
BH7	0.3-0.5	Coarse	700	1000	2500	10000
BH8	0.02-0.2	Coarse	700	1000	2500	10000
BH8	0.3-0.5	Coarse	700	1000	2500	10000
TP13	0-0.1	Coarse	700	1000	2500	10000
TP13	0.5-0.6	Coarse	700	1000	2500	10000
TP14	0-0.1	Coarse	700	1000	2500	10000
TP14	0.4-0.5	Coarse	700	1000	2500	10000
TP14	0.9-1.0	Coarse	700	1000	2500	10000
TP15	0-0.1	Coarse	700	1000	2500	10000
TP15 - [LAB_DUP]	0-0.1	Coarse	700	1000	2500	10000
TP15	0.9-1.0	Coarse	700	1000	2500	10000
TP15	1.3-1.5	Coarse	700	1000	2500	10000
TP16	0-0.1	Coarse	700	1000	2500	10000
TP16	0.4-0.5	Coarse	700	1000	2500	10000
SDUP1	0-0.1	Coarse	700	1000	2500	10000
SDUP2	0-0.1	Coarse	700	1000	2500	10000
SDUP3	0-0.1	Coarse	700	1000	2500	10000
SDUP4	0-0.1	Coarse	700	1000	2500	10000

TABLE S4 SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA All data in mg/kg unless stated otherwise

Analyte		C ₆ -C ₁₀	>C ₁₀ -C ₁₆	>C ₁₆ -C ₃₄	>C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
PQL - Envirolab Services	5	25	50	100	100	0.2	0.5	1	1	1	
CRC 2011 -Direct contac	ct Criteria	4,400	3,300	4,500	6,300	100	14,000	4,500	12,000	1,400	
Site Use				RESIDI	NTIAL WITH A	CESSIBLE SOIL-	DIRECT SOIL C	ONTACT			
Sample Reference	Sample Depth										
BH1	0-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.5
BH1 - [LAB_DUP]	0-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
BH1	0.8-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
BH2	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.3
BH2	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.9
BH2	0.8-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.8
BH3	0-0.1	<25	<50	130	230	<0.2	<0.5	<1	<1	<1	0.6
BH3	0.3-0.5	<25	<50	320	120	<0.2	<0.5	<1	<1	2	0.7
BH3	1.3-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.5
BH4	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2.2
BH4 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
BH4	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2
BH4	0.8-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	3.8
BH5	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.6
BH5	0.8-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.6
BH6	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
BH6	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.1
BH6	0.8-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.1
BH7	0.02-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.8
BH7 - [LAB_DUP]	0.02-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
BH7	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2
BH8	0.02-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH8	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
TP13	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.6
TP13	0.5-0.6	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.3
TP14	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1
TP14	0.4-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.5
TP14	0.9-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.1
TP15	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
TP15 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
TP15	0.9-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
TP15	1.3-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.5
TP16	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.2
TP16	0.4-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.2
SDUP1	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP2	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP3	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP4	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
Total Number of Sampl	es	38	38	38	38	38	38	38	38	38	30
Maximum Value		<pql< td=""><td><pql< td=""><td>320</td><td>230</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>320</td><td>230</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	320	230	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<>	<pql< td=""><td>2</td><td>3.8</td></pql<>	2	3.8

Concentration above the SAC Concentration above the PQL

VALUE Bold

TABLE S5

ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS

HSL-A: Residential with garden/accessible soils; children's day care centers; preschools; and primary schools

							F	FIELD DATA											LABORATORY	DATA						
ate Sampled	Sample reference		Visible ACM in top 100mm	Approx. Volume of Soil (L)		Mass ACM (g)	Mass Asbestos in ACM (g)	[Asbestos from ACM in soil] (%w/w)	Mass ACM <7mm (g)	Mass Asbestos in ACM <7mm (g)	[Asbestos from ACM <7mm in soil] (%w/w)	Mass FA (g)	Mass Asbestos in FA (g)	[Asbestos from FA in soil] (%w/w)	Lab Report Number	Sample refeference	Sample Depth	Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos (g/kg)	Ashestos II) in soil <() 1g/kg	>7mm	FA and AF Estimation (g)	ACM >7mm Estimation %(w/w)	FA and Estimati
SAC			No					0.01			0.001			0.001											0.01	0.001
												-				BH1	0-0.3		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
3/05/2023	BH2	0-0.2	No	10	12,490	No ACM observed			No ACM <7mm observed			No FA observed		-		BH2	0-0.2		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
4/05/2023	внз	0-0.1	No	10	10,180	No ACM observed			No ACM <7mm observed			No FA observed		-		внз	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
4/05/2023	внз	0.1-0.3	NA	2	2,240	No ACM observed			No ACM <7mm observed			No FA observed		-					-				-		-	
4/05/2023	внз	0.3-1.1	NA	8	8,960	No ACM observed			No ACM <7mm observed			No FA observed		-		вн3	0.3-0.5		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
4/05/2023	BH4	0-0.2	Yes	10	10,670	48.3	7.2495	0.0679	No ACM <7mm observed			No FA observed		-		BH4	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
														-		BH5	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
2/05/2023	вн6	0-0.2	No	10	10,440	No ACM observed			No ACM <7mm observed			No FA observed				вн6	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
2/05/2023	ВН7	0.02-0.3	NA	1.7	1,880	No ACM observed			No ACM <7mm observed			No FA observed				BH7	0.02-0.3		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
																BH8	0.02-0.2		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
4/05/2023	TP13	0-0.1	No	10	10,520	No ACM observed			No ACM <7mm observed			No FA observed				TP13	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
4/05/2023	TP13	0.1-0.3	NA	10	10,220	No ACM observed			No ACM <7mm observed			No FA observed							-							
4/05/2023	TP14	0-0.2	No	10	12,310	No ACM observed			No ACM <7mm observed			No FA observed				TP14	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
4/05/2023	TP15	0-0.1	No	10	10,290	No ACM observed			No ACM <7mm observed			No FA observed				TP15	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
4/05/2023	TP15	0.1-0.5	NA	10	10,340	No ACM observed			No ACM <7mm observed			No FA observed							-							
4/05/2023	TP15	0.5-1.1	NA	10	12,520	No ACM observed			No ACM <7mm observed			No FA observed				TP15	0.9-1.0		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
				-								-		-		TP16	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001

Concentration above the SAC VALUE

TABLE S6
SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILS AND ESLS
All data in mg/kg unless stated otherwise

Land Use Category												URBAN RESID	ENTIAL AND PUBL	IC OPEN SPAC	CE								
									AGED HEAV	Y METALS-EILs			EII	S					ESLs				
				рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
QL - Envirolab Services	s			-	1	-	4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
Ambient Background Co	oncentration (A	BC)		-	-	-	NSL	8	18	104	5	77	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
BH1	0-0.3	Silty Clay	Fine	NA	NA	NA	<4	37	70	7	10	22	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH1 - [LAB_DUP]	0-0.3	Laboratory Duplicate	Fine	NA	NA	NA	<4	38	70	9	10	25	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.1
BH1	0.8-1.0	XW Andersite	Fine	NA	NA	NA	<4	62	130	9	14	31	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH2	0-0.2	F: Gravelly Sandy Clay	Fine	NA	NA	NA	6	38	200	8	11	36	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.69
BH2	0.3-0.5	Sandy Silty Clay	Fine	NA	NA	NA	6	91	280	5	18	37	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH2	0.8-1.0	Silty Clay	Fine	NA	NA	NA	6	63	200	6	13	30	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH3	0-0.1	F: Silty Clay	Fine	NA	NA	NA	7	23	57	12	9	24	<1	<0.1	<25	<50	130	230	<0.2	<0.5	<1	<1	0.09
BH3	0.3-0.5	F: Sandy Silty Clay	Fine	NA	NA	NA	8	47	86	15	11	33	2	<0.1	<25	<50	320	120	<0.2	<0.5	<1	<1	5.4
BH3	1.3-1.5	Sandy Silty Clay	Fine	NA	NA	NA	4	72	120	9	12	22	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.2
BH4	0-0.1	F: Silty Clay	Fine	NA	NA	NA	5	30	82	28	7	53	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.1
BH4 - [LAB_DUP]	0-0.1	Laboratory Duplicate	Fine	NA	NA	NA	5	28	80	26	6	53	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.09
BH4	0.3-0.5	Sandy Silty Clay	Fine	NA	NA	NA	7	18	300	3	11	31	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH4	0.8-1.0	XW Andersite	Coarse	NA	NA	NA	6	16	210	2	9	24	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH5	0-0.1	Silty Clay	Fine	NA	NA	NA	9	26	230	13	9	30	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.3
BH5	0.8-1.0	Silty Clay	Fine	NA	NA	NA	4	52	180	7	12	20	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH6	0-0.1	F: Silty Clay	Fine	NA	NA	NA	<4	22	220	17	9	54	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH6	0.3-0.5	Sandy Silty Clay	Fine	NA	NA	NA	<4	19	440	3	10	51	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH6	0.8-1.0	XW Andersite	Fine	NA	NA	NA	<4	16	400	1	9	55	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH7	0.02-0.3	F: Gravelly Silty Sand	Coarse	NA	NA	NA	7	36	94	24	9	36	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH7 - [LAB_DUP]	0.02-0.3	Laboratory Duplicate	Coarse	NA	NA	NA	6	51	100	20	11	34	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH7	0.3-0.5	F: Silty Sand	Coarse	NA	NA	NA	7	66	120	10	13	29	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH8	0.02-0.2	F: Silty Sand	Coarse	NA	NA	NA	<4	13	12	7	2	7	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	2.6
BH8	0.3-0.5	Sandy Silty Clay	Fine	NA	NA	NA	<4	53	170	7	15	42	<1	NA .	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.3
TP13	0-0.1	F: Silty Clay	Fine	NA	NA	NA	5	20	210	22	8	59	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.05
TP13	0.5-0.6	Silty Clay	Fine	NA	NA NA	NA NA	7	24	490	4	11	28	<1	NA -0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP14 TP14	0-0.1	F: Silty Clay	Fine	NA NA	NA NA	NA NA	15 <4	31 17	99 420	120	10	88 57	4	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1	0.1
TP14	0.4-0.5	Silty Clay	Fine	NA NA	NA NA	NA NA	<4 <4	10	420	2	10	47	<1	NA NA	<25	<50	<100	<100	<0.2	<0.5	<1		<0.05
TP15	0.9-1.0	XW Andersite F: Silty Clay	Coarse Fine	NA NA	NA NA	NA NA	6	21	34	12	7	30	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.05
	0-0.1		Fine	NA NA	NA NA	NA NA	5	19	29	12	7	30	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.05
TP15 - [LAB_DUP] TP15	0.9-1.0	Laboratory Duplicate F: Sandy Silty Clay	Fine	NA NA	NA NA	NA NA	7	24	32	14	5	11	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	3.4
TP15	1.3-1.5	Silty Clay	Fine	NA NA	NA NA	NA NA	<4	52	110	7	9	18	<1	NA NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
TP16	0-0.1	Silty Clay	Fine	NA NA	NA NA	NA NA	10	56	190	25	14	61	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.1
TP16	0.4-0.5	Silty Clay	Fine	NA NA	NA NA	NA NA	5	74	180	4	15	27	<1	NA NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
SDUP1	0-0.1	Duplicate of TP16	Fine	NA	NA.	NA.	10	55	190	25	14	66	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.2
SDUP2	0-0.1	Duplicate of TP15	Fine	NA	NA NA	NA.	6	20	31	12	7	29	<1	NA.	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
SDUP3	0-0.1	Duplicate of TP14	Fine	NA NA	NA NA	NA NA	11	22	130	170	6	140	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.08
SDUP4	0-0.1	Duplicate of TP13	Fine	NA.	NA.	NA.	5	16	160	24	7	67	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.05
SDUP4 - [LAB DUP]	0-0.1	Laboratory Duplicate	Fine	NA.	NA.	NA.	5	15	170	19	7	60	NA.	NA	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA	NA.
													1										<u> </u>
Total Number of Sample	les			0	0	0	39	39	39	39	39	39	38	20	38	38	38	38	38	38	38	38	38
Maximum Value				NA	NA	NA	15	91	490	170	18	140	1 2	<pql< td=""><td><pql< td=""><td><pql< td=""><td>320</td><td>230</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>5.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>320</td><td>230</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>5.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>320</td><td>230</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>5.4</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	320	230	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>5.4</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>5.4</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>5.4</td></pql<></td></pql<>	<pql< td=""><td>5.4</td></pql<>	5.4

Concentration above the SAC
Concentration above the PQL
The guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below

EIL AND ESL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Soil Texture	рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
BH1	0-0.3	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH1 - [LAB_DUP]	0-0.3	Laboratory Duplicate	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH1	0.8-1.0	XW Andersite	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH2	0-0.2	F: Gravelly Sandy Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH2	0.3-0.5	Sandy Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH2	0.8-1.0	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH3	0-0.1	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH3	0.3-0.5	F: Sandy Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH3	1.3-1.5	Sandy Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH4	0-0.1	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH4 - [LAB_DUP]	0-0.1	Laboratory Duplicate	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH4	0.3-0.5	Sandy Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH4	0.8-1.0	XW Andersite	Coarse	NA	NA	NA	100	200	80	1200	35	150	170		180	120	300	2800	50	85	70	105	20
BH5	0-0.1	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH5	0.8-1.0	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH6	0-0.1	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
BH6	0.3-0.5	Sandy Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH6	0.8-1.0	XW Andersite	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
BH7	0.02-0.3	F: Gravelly Silty Sand	Coarse	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	300	2800	50	85	70	105	20
BH7 - [LAB_DUP]	0.02-0.3	Laboratory Duplicate	Coarse	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	300	2800	50	85	70	105	20
BH7	0.3-0.5	F: Silty Sand	Coarse	NA	NA	NA	100	200	80	1200	35	150	170		180	120	300	2800	50	85	70	105	20
BH8	0.02-0.2	F: Silty Sand	Coarse	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	300	2800	50	85	70	105	20
BH8	0.3-0.5	Sandy Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
TP13	0-0.1	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
TP13	0.5-0.6	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
TP14	0-0.1	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
TP14	0.4-0.5	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
TP14	0.9-1.0	XW Andersite	Coarse	NA	NA	NA	100	200	80	1200	35	150	170		180	120	300	2800	50	85	70	105	20
TP15	0-0.1	F: Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
TP15 - [LAB_DUP]	0-0.1	Laboratory Duplicate	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
TP15	0.9-1.0	F: Sandy Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
TP15	1.3-1.5	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
TP16	0-0.1	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
TP16	0.4-0.5	Silty Clay	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
SDUP1	0-0.1	Duplicate of TP16	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
SDUP2	0-0.1	Duplicate of TP15	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
SDUP3	0-0.1	Duplicate of TP14	Fine	NA	NA	NA	100	200	80	1200	35	150	170	180	180	120	1300	5600	65	105	125	45	20
SDUP4	0-0.1	Duplicate of TP13	Fine	NA	NA	NA	100	200	80	1200	35	150	170		180	120	1300	5600	65	105	125	45	20
SDUP4 - [LAB_DUP]	0-0.1	Laboratory Duplicate	Fine	NA	NA	NA	100	200	80	1200	35	150				-	-					-	-

TABLE ST

SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES

All data in mg/kg unless stated otherwise

						HEAVY	METALS				P/	AHs		OC/OP	PESTICIDES		Total			TRH				BTEX CO	MPOUNDS		
											Total	B(a)P	Total		Total Moderately	Total	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total	Benzene	Toluene	Ethyl	Total	ASBESTOS FIBRES
			Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	PAHs	5(0).	Endosulfans	cc. op jcs	Harmful	Scheduled	. 055	- C ₆ Cg	010 014	215 028	229 036	C ₁₀ -C ₃₆	Denzene	rolaciic	benzene	Xylenes	
PQL - Envirolab Services			4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.2	0.5	1	1	100
General Solid Waste CT1			100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	50	50	650	30	NSL	100	10,000	10	288	600	1,000	
General Solid Waste SCC			500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	50	50	650		NSL		10,000	18	518	1,080	1,800	
											1	_													-		-
Restricted Solid Waste C			400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	50	50	2600		NSL		40,000	40	1,152	2,400	4,000	-
Restricted Solid Waste S	CC2		2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	50	50	2600		NSL		40,000	72	2,073	4,320	7,200	
Sample Reference	Sample Depth	Sample Description																									
BH1	0-0.3	Silty Clay	<4	<0.4	37	70	7	<0.1	10	22	0.2	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH1 - [LAB_DUP]	0-0.3	Laboratory Duplicate	<4	<0.4	38	70	9	<0.1	10	25	0.55	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH1	0.8-1.0	XW Andersite	<4	<0.4	62	130	9	<0.1	14	31	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH2	0-0.2	F: Gravelly Sandy Clay	6	<0.4	38	200	8	<0.1	11	36	6.9	0.69	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH2	0.3-0.5	Sandy Silty Clay	6	<0.4	91	280	5	<0.1	18	37	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH2	0.8-1.0	Silty Clay	6	<0.4	63	200	6	<0.1	13	30	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH3	0-0.1	F: Silty Clay	7	<0.4	23	57	12	<0.1	9	24	0.64	0.09	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	180	180	<0.2	<0.5	<1	<1	Not Detected
BH3	0.3-0.5	F: Sandy Silty Clay	8	<0.4	47	86	15	0.2	11	33	85	5.4	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	170	200	370	<0.2	<0.5	<1	<1	Not Detected
BH3	1.3-1.5	Sandy Silty Clay	4	<0.4	72	120	9	<0.1	12	22	3.3	0.2	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH4	0-0.1	F: Silty Clay	5	<0.4	30	82	28	<0.1	7	53	0.66	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH4 - [LAB_DUP]	0-0.1	Laboratory Duplicate	5	<0.4	28	80	26	<0.1	6	53	0.5	0.09	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH4 BH4	0.3-0.5	Sandy Silty Clay	7	<0.4	18	300	3	<0.1	11	31	<0.05	<0.05	NA	NA	NA NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
BH4 BH5	0.8-1.0	XW Andersite	6	<0.4	16 26	210	2	<0.1	9	24 30	<0.05	<0.05	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA 10.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA Nat Data at a d
BH5	0-0.1	Silty Clay		<0.4		230	13	<0.1	9		2.9	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH6	0.8-1.0 0-0.1	Silty Clay	4 <4	<0.4 <0.4	52 22	180 220	17	<0.1 <0.1	12 9	20 54	<0.05 <0.05	<0.05 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5	<1	<1 <1	NA Not Detected
BH6	0.3-0.5	F: Silty Clay	<4	<0.4	19	440	3	<0.1	10	51	<0.05	<0.05	NA	VO.1	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5 <0.5	<1 <1	<1	Not Detected NA
BH6	0.8-1.0	Sandy Silty Clay	<4	<0.4	16	400	1	<0.1	9	55	<0.05	<0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
BH7	0.02-0.3	XW Andersite	7	<0.4	36	94	24	<0.1	9	36	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH7 - [LAB DUP]	0.02-0.3	F: Gravelly Silty Sand Laboratory Duplicate	6	<0.4	51	100	20	<0.1	11	34	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NOI Detected NA
BH7	0.3-0.5	F: Silty Sand	7	<0.4	66	120	10	0.6	13	29	<0.05	<0.05	NA	NA	NA	NA NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
BH8	0.02-0.2	F: Silty Sand	<4	<0.4	13	12	7	<0.1	2	7	27	2.6	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH8	0.3-0.5	Sandy Silty Clay	<4	<0.4	53	170	7	<0.1	15	42	3.3	0.3	NA	NA	NA	NA.	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
TP13	0-0.1	F: Silty Clay	5	<0.4	20	210	22	0.1	8	59	0.2	0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP13	0.5-0.6	Silty Clay	7	<0.4	24	490	4	<0.1	11	28	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
TP14	0-0.1	F: Silty Clay	15	<0.4	31	99	120	0.1	3	88	1.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP14	0.4-0.5	Silty Clay	<4	<0.4	17	420	6	<0.1	10	57	0.5	0.06	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
TP14	0.9-1.0	XW Andersite	<4	<0.4	10	470	2	<0.1	10	47	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
TP15	0-0.1	F: Silty Clay	6	<0.4	21	34	12	<0.1	7	30	0.3	0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP15 - [LAB_DUP]	0-0.1	Laboratory Duplicate	5	<0.4	19	29	12	<0.1	7	30	0.2	0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
TP15	0.9-1.0	F: Sandy Silty Clay	7	<0.4	24	32	14	<0.1	5	11	43	3.4	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP15	1.3-1.5	Silty Clay	<4	<0.4	52	110	7	0.7	9	18	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
TP16	0-0.1	Silty Clay	10	<0.4	56	190	25	<0.1	14	61	1.4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
TP16	0.4-0.5	Silty Clay	5	<0.4	74	180	4	<0.1	15	27	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
SDUP1	0-0.1	Duplicate of TP16	10	<0.4	55	190	25	<0.1	14	66	1.7	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
SDUP2	0-0.1	Duplicate of TP15	6	<0.4	20	31	12	<0.1	7	29	0.1	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
SDUP3	0-0.1	Duplicate of TP14	11	<0.4	22	130	170	<0.1	6	140	0.86	0.08	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
SDUP4	0-0.1	Duplicate of TP13	5	<0.4	16	160	24	<0.1	7	67	0.3	0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
SDUP4 - [LAB_DUP]	0-0.1	Laboratory Duplicate	5	<0.4	15	170	19	<0.1	7	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH4-FCF1	0-0.2	Fragment	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
BH4-FCF2	0-0.2	Fragment	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
															2.2											20	10
Total Number of Samp	les		39	39	39	39	39	39	39	39	38	38	20	20	20	20	20	38	38	38	38	38	38	38	38	38	16
Maximum Value			15	<pql< td=""><td>91</td><td>490</td><td>170</td><td>0.7</td><td>18</td><td>140</td><td>85</td><td>5.4</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	91	490	170	0.7	18	140	85	5.4	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	170	200	370	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<>	<pql< td=""><td>Detected</td></pql<>	Detected

Concentration above the CT1 Concentration above SCC1 Concentration above the SCC2 Concentration above PQL

	ATORY TCLP R	ESULTS ted otherwise		
			Lead	B(a)P
PQL - Envirolal	b Services		0.03	0.001
TCLP1 - Genera	al Solid Waste		5	0.04
TCLP2 - Restric	cted Solid Was	te	20	0.16
TCLP3 - Hazaro	dous Waste		>20	>0.16
Sample Reference	Sample Depth	Sample Description		
вн3	0.3-0.5	F: Sandy Silty Clay	NA	0.0086
BH8	0.02-0.2	F: Silty Sand	NA	<0.001
TP14	0-0.1	F: Silty Clay	0.07	NA
TP15	0.9-1.0	F: Sandy Silty Clay	NA	<0.001
SDUP3	0-0.1	Duplicate of TP14	0.3	NA
Total Number	er of samples		2	3
Maximum V	alue		0.30	0.0086
General Solid N Restricted Soli Hazardous Wa Concentration	d Waste iste		VALUE VALUE Bold	

Preliminary (Stage 1) Site Investigation Temora Hospital, 169-189 Loftus Street, Temora, NSW E35822PR

TABLE Q1

SOIL QA/QO	SUMMARY	Υ																																																									
			TRH C6 - C10	TRH >C10-C16	TRH >C16-C34	TRH >C34-C40	Benzene Toluene	Ethylbenzene	m+p-xylene	o-Xylene	Naphthalene	Acenaphthylene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Benzo(b.j+k)fluoranthen	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthra-cene	Benzo(g,h,i)perylene	нсв	alpha- BHC	gamma-BHC	beta- BHC	Heptachlor	Aldrin	Heptachlor Epoxide	Gamma- Chlordane	alpha-chlordane	Endosulfan I	pp-DDE	Dieldrin	Endrin bp-DDD	Endosulfan II	pp-DDT	Endrin Aldehyde	Endosulfan Sulphate	Methoxychlor	Azinphos-methyl (Guthid Bromophos-ethyl	Chlorpyriphos	Chlorpyriphos-methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenitromion Malathion	Marathion	Ronnel	Total PCBS	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
			25	50	100	100 0	.2 0.5	1	2																		0.1	0.1 0.	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1 0.	0.1	1 0.1	0.1	0.1	0.1	0.1 0	0.1	0.1								1 0.1		4	0.4	1	1	1 0.1	1 1	1
	QL Enviro	olab VIC	25	50	100	100 0	.2 0.5	1	2	1	0.1	0.1 0.	1 0.1	0.1	0.1	0.1	0.1	0.1 0.	1 0.2	2 0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1 0.	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1 0.	0.1	1 0.1	0.1	0.1	0.1	0.1 0	0.1 0.1	0.1	0.1	0.1	0.1	0.1	J.1 0.1	0.1	.1 0.1	1 0.1	0.1	4	0.4	1	1	1 0.	1 1	1
Intra	P16	0-0.1	<25	<50	<100	<100 <	0.2 <0.5	5 <1	<2	<1	<0.1 <	:0.1 <0	0.1 <0.1	1 <0.1	<0.1	0.3	0.3	<0.1 0.	1 0.2	2 0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0	.1 <0.1	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1	<0.1	<0.1 <	0.1	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1 <	.0.1 <0	J.1 <0.	0.1 <0.1	.1 <0.1	<0.1	10	<0.4	56	190	25 <0	.1 14	61
laboratory	DUP1	0-0.1	<25	<50	<100	<100 <	0.2 <0.5	5 <1	<2	<1	<0.1 <	:0.1 <0	0.1 <0.1	1 <0.1	<0.1	0.4	0.4	0.1 0.	1 0.3	3 0.2	0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	.1 <0.1	<0.1	<0.1	<0.1	<0.1 <	<0.1 <0	0.1 <0.	.1 <0.1	<0.1	<0.1	<0.1 <	0.1 <	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1 <	.0.1 <0	J.1 <0.	J.1 <0.1	.1 <0.1	<0.1	10	<0.4	55	190	25 <0	.1 14	. 66
duplicate	1EAN		nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc n	ic nc	nc	nc	0.35	0.35	0.075 0.	1 0.2	5 0.15	0.1	nc	0.15	nc	nc	nc	nc	nc n	c nc	. nc	nc	nc	nc	nc	nc n	nc no	c nc	nc	nc	nc	nc i	nc no	nc	nc	nc	nc	nc i	nc nr	ic nc	c nc	nc	nc	10	nc	55.5	190	25 n	c 14	63.5
	PD %		nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc n	ic nc	nc	nc	29%	29%	67% 09	6 409	% 67%	0%	nc	67%	nc	nc	nc	nc	nc n	c nc	. nc	nc	nc	nc	nc	nc n	nc no	c nc	nc	nc	nc	nc i	nc no	nc	nc	nc	nc	nc i	nc nr	ic nc	c nc	: nc	nc	0%	nc	2%	0% C	J% n	ε 0%	8% د
Intra	P15	0-0.1	<25	<50	<100	<100 <	0.2 <0.5	5 <1	<2	<1	<0.1 <	:0.1 <0	0.1 <0.1	1 <0.1	<0.1	0.1	0.1	<0.1 <0	.1 <0	2 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0	.1 <0.1	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	0.1	<0.1	<0.1	<0.1 <	0.1	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	J.1 <0.1	J.1 <0.1	.1 <0.1	<0.1	6	<0.4	21	34 1	12 <0	.1 7	30
laboratory 5	DUP2	0-0.1	<25	<50	<100	<100 <	0.2 <0.5	5 <1	<2	<1	<0.1 <	:0.1 <0	0.1 <0.1	1 <0.1	<0.1	0.1	<0.1	<0.1 <0	.1 <0	2 <0.0	5 <0.1	<0.1	<0.1	-	-	-	-		-	-	-	-	-	-				-	-	-	-		-	-	-	-	-				-	-	6	<0.4	20	31 ′	12 <0	.1 7	29
duplicate I	1EAN		nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc n	ic nc	nc	nc	0.1	0.075	nc n	c nc	0.037	75 nc	nc	nc	nc	nc	nc	nc	nc n	c nc	. nc	nc	nc	nc	nc	nc n	nc no	c nc	nc	nc	nc	nc i	nc no	nc	nc	nc	nc	nc i	nc nr	ic nc	c nc	: nc	nc	6	nc	20.5	32.5	12 n	ε 7	29.5
	PD %		nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc n	ic nc	nc	nc	0%	67%	nc n	c nc	67%	nc	nc	nc	nc	nc	nc	nc	nc n	c nc	. nc	nc	nc	nc	nc	nc n	nc no	c nc	nc	nc	nc	nc i	nc no	nc	nc	nc	nc	nc i	ac nr	ic nc	.c nc	. nc	nc	0%	nc	5%	9% (J% n	ε 0%	3%
Inter		0-0.1	<25	<50	<100	<100 <	0.2 <0.5	5 <1	<2	<1	<0.1 <	:0.1 <0	0.1 <0.1	1 0.1	<0.1	0.3	0.3	0.1 0.	1 <0	2 0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0	.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1	<0.1	<0.1 <	0.1	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	J.1 <0.1	.1 <0.2	1 <0.1	<0.1	15	<0.4	31	99 1	.20 0.	1 3	88
laboratory	DUP3	0-0.1	<25	<50	<100	<100 <	0.2 <0.5	5 <1	<2	<1	<0.1 <	:0.1 <0	0.1 <0.1	1 0.1	<0.1	0.2	0.2	<0.1 <0	.1 <0	2 0.08	0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0	.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1	<0.1	<0.1 <	0.1	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	J.1 <0.1	.1 <0.2	1 <0.1	<0.1	11	<0.4	22	130 1	.70 <0	.1 6	140
duplicate	1EAN		nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc n	ic nc	0.1	nc	0.25	0.25	0.075	75 nc	0.09	0.075	nc	0.1	nc	nc	nc	nc	nc n	c nc	, nc	nc	nc	nc	nc	nc n	nc no	c nc	nc	nc	nc	nc i	nc no	nc	nc	nc	nc	nc i	nc nr	ic nc	.c nc	. nc	nc	13	nc	26.5	114.5 1	.45 0.0	75 4.5	
	PD %		nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc n	ic nc	0%	nc	40%	40%	67% 67	% nc	229	67%	nc	0%	nc	nc	nc	nc	nc n	c nc	. nc	nc	nc	nc	nc	nc n	nc no	c nc	nc	nc	nc	nc i	nc no	nc	nc	nc	nc	nc i	nc nr	ıc nc	.c nc	. nc	nc	31%	nc	34%	27% 34	4% 67	% 679	469
																																																						\perp					
Inter		0-0.1		<50	<100	<100 <	0.2 <0.5	5 <1	<2	<1	<0.1 <	0.1 <0	0.1 <0.1	1 <0.1	<0.1	<0.1	0.1	<0.1 <0	.1 <0	2 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	0.1	<0.1	<0.1	<0.1 <	<0.1 <	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1 <	J.1 <0.	1.1 <0.1	0.1 <0.1	1 <0.1	<0.1	5	<0.4	20	210 7	∠2 0.	1 8	59
,	DUP4	0-0.1	<25	<50	<100	<100 <	0.2 <0.5	5 <1	<2	<1	<0.1 <	:0.1 <0	0.1 <0.1	1 <0.1	<0.1	0.1	0.1	<0.1 <0	.1 <0	2 0.05	< 0.1	<0.1	<0.1	-	-	-	-		-	-	-	-	-	-				-	-	-	-		-	-	-	-	-			-	-	-	5	<0.4	16	160 7	∠4 <0	.1 7	67
duplicate	1EAN		nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc n	ic nc	nc	nc	0.075	0.1	nc n	c nc	0.05	nc	nc	nc	nc	nc	nc	nc	nc n	c nc	. nc	nc	nc	nc	nc	nc n	nc no	c nc	nc	nc	nc	nc i	nc no	nc	nc	nc	nc	nc i	nc nc	c nc	c nc	. nc	nc	5	nc	18	185 7	23 0.0	75 7.5	63
!	PD %		nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc n	ic nc	nc	nc	67%	0%	nc n	c nc	: 0%	nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc n	nc no	c nc	nc	nc	nc	nc i	nc no	nc	nc	nc	nc	nc i	nc nc	ıc nc	c nc	nc	nc	0%	nc	22%	27% 9	% 67°	7% 13%	6 139
																				_					_	_	_	_	_							_						_	_		$\overline{}$														_
Field	B-S1	-	<25	<50	<100	<100 <	0.2 <0.5	<1	<2	<1	<0.1 <	:0.1 <0	0.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1 <0	.1 <0	2 <0.0	5 <0.1	<0.1	<0.1	-	-	-	-		-	-	-	-	-	-		- -		-	-	-	-	- -	-	-	-	-	-			-		-	<4	<0.4		1	3 <0.	.1 5	12
Blank	/05/23			_		_	_			-			_	_			_		_	_	_				_	_	_	_	_	+-	_		_	_	_	_	_	_		_	_	_	_	_				\rightarrow	-	+				-	-	-	-	\rightarrow	+
		. 0. 1		-			_	+	-	-+		_		_	+	-	_	_		_	+	\vdash		_	_	\rightarrow	_	_	_	+-	_	\vdash	_	-	_	_	_	_	\vdash	_	-	_	_	-	-	_		-	-	-	-	1							_
Field		μg/L ¹	26	<50	<100	<100	<1 <1	<1	<2	<1	<2	<1 <	1 <1	<1	<1	<1	<1	<1 <	1 <2	! <1	<1	<1	<1	-	-	-	-		-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-					-	<0.05	<0.01	<0.01	0.3 <0	.03 <0.0	JU5 <0.0	2 0.2
Rinsate	/05/23																													\bot																		\rightarrow	\rightarrow	\rightarrow	\bot			\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\perp
7.0							70/ 67-	(0701	070/	000/		_			_	_			_	_				_	_	_	_			+-	_																	-	-	+	——		\vdash	\leftarrow	\rightarrow	\rightarrow	-	+	+
	S-S1 /05/23		-	-	-	- 9	/% 979	6 97%	97%	98%	-			-	-	-	-		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-			-	-	-	-	-		-	-	-	-	-					-	-	-	-	-			
Spike	/05/23																						- 1																		- 1											1	1						

Result outside of QA/QC acceptance criteria

1. Heavy metal concentrations reported in mg/L

DSI Laboratory Summary Tables

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC: Ambient Background Concentration PCBs: Polychlorinated Biphenyls

ACM: **Asbestos Containing Material** PCE: Perchloroethylene (Tetrachloroethylene or Teterachloroethene)

ADWG: Australian Drinking Water Guidelines pH_{KCL}: pH of filtered 1:20, 1M KCL extract, shaken overnight

AF: Ashestos Fines pH_{ox}: pH of filtered 1:20 1M KCl after peroxide digestion

ANZG Australian and New Zealand Guidelines PQL: **Practical Quantitation Limit**

B(a)P: Benzo(a)pyrene RS: Rinsate Sample

CEC: Cation Exchange Capacity RSL: **Regional Screening Levels** CRC: Cooperative Research Centre RSW: **Restricted Solid Waste** CT: Contaminant Threshold SAC: Site Assessment Criteria

EILs: **Ecological Investigation Levels** SCC: **Specific Contaminant Concentration**

ESLs: **Ecological Screening Levels** Chromium reducible sulfur S_{cr}: FA: Fibrous Asbestos Peroxide oxidisable Sulfur S_{POS}: GIL: **Groundwater Investigation Levels** SSA: Site Specific Assessment

GSW: General Solid Waste **SSHSLs:** Site Specific Health Screening Levels

HILS: **Health Investigation Levels** TAA: Total Actual Acidity in 1M KCL extract titrated to pH6.5

HSLs: **Health Screening Levels** TB: Trip Blank

TCA: 1,1,1 Trichloroethane (methyl chloroform) **HSL-SSA:** Health Screening Level-SiteSpecific Assessment

kg/L TCE: Trichloroethylene (Trichloroethene) kilograms per litre Not Analysed NA: TCLP: **Toxicity Characteristics Leaching Procedure** NC: Not Calculated TPA: Total Potential Acidity, 1M KCL peroxide digest

NEPM: National Environmental Protection Measure TS: Trip Spike

NHMRC: National Health and Medical Research Council TRH: Total Recoverable Hydrocarbons TSA: Total Sulfide Acidity (TPA-TAA) NL: **Not Limiting**

NSL: UCL: Upper Level Confidence Limit on Mean Value No Set Limit OCP: Organochlorine Pesticides **USEPA** United States Environmental Protection Agency OPP: Organophosphorus Pesticides **VOCC:** Volatile Organic Chlorinated Compounds

Polycyclic Aromatic Hydrocarbons WHO: World Health Organisation PAHs:

%w/w: weight per weight ppm: Parts per million

Table Specific Explanations:

HIL Tables:

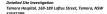
- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also refered to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with low traffic have been quoted).

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.


QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in μg/L.

TABLE S1
SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.
HIL-A: 'Residential with garden/accessible soils; children's day care centers; preschools; and primary schools'

All data in mg/kg unless st	tated otherwis	se	Arsenic	Cadmium	Chromium (Total)	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total	Carcinogenic	НСВ	Endosulfan	Methoxychlor	Aldrin &	Chlordane	DDT, DDD	Heptachlor	OP PESTICIDES (OPPs) Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
PQL - Envirolab Services			4	0.4	(Total)	VI 1	1	1	0.1	1	1	PAHs -	PAHs 0.5	0.1	0.1	0.1	Dieldrin 0.1	0.1	& DDE 0.1	0.1	0.1	0.1	100
Site Assessment Criteria (S	SAC) Sample	County Boundation	100	20	NSL	100	6000	300	40	400	7400	300	3	10	270	300	6	50	240	6	160	1	Detected/Not Detected
Sample Reference TP101	Depth 0-0.1	Sample Description Fill: Silty Clay	6	<0.4	40	NA	65	21	0.2	11	36	19	2.5	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	Not Detected
TP101	0.4-0.5	Silty Clay	6	<0.4	51	NA	72	13	<0.1	12	26	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0-0.1	Fill: Silty Clay Laboratory Duplicate	6	<0.4 <0.4	34 35	NA NA	58 60	20 20	<0.1 <0.1	10 10	36 38	34 32	4.2 3.9	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	Not Detected NA
	0-0.1	Fill: Silty Clay Fill: Silty Clay	5 5	<0.4 <0.4	37 34	NA NA	43 58	28 21	<0.1 <0.1	9 10	32 39	24 59	3.2 6.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	Not Detected Not Detected
TP105	0-0.1	Fill: Silty Clay	4	<0.4	26	NA	52	21	<0.1	8	38	54	6.1	NA	NA	NA	NA	NA	NA	NA	NA co.1	NA	Not Detected
	0-0.1	Fill: Silty Clay Silty Clay	5 5	<0.4 <0.4	33 44	NA NA	72 100	18 8	<0.1 <0.1	11 9	43 24	5.3 <0.05	0.7 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
	0-0.1	Fill: Silty Clay Fill: Silty Clay	6 11	<0.4 <0.4	39 46	NA NA	74 81	14 21	<0.1 0.2	10 11	39 49	2.8	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	Not Detected Not Detected
	0.4-0.5	Silty Clay	8	<0.4	46 57	NA NA	100	9	<0.1	10	30	<0.05	<0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA Not Detected
	0-0.1	Fill: Silty Clay Silty Clay	10	<0.4 <0.4	59	NA NA	140 190	10 10	<0.1 0.1	13 12	30 30	<0.05 <0.05	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	Not Detected NA
	0-0.1	Laboratory Duplicate Fill: Silty Clay	9 5	<0.4 <0.4	64 25	NA NA	200 100	8 12	<0.1	12 7	30	<0.05 3.6	<0.5 0.6	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA Not Detected
	0-0.1	Fill: Silty Clay	6 7	<0.4 <0.4	21 47	NA NA	320 250	35 9	<0.1	10	68	1.3 2.9	<0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1	<0.1	<0.1 NA	Not Detected
TP113	0-0.1	Fill: Silty Clay Silty Clay	7	<0.4	29	NA NA	340	21	<0.1 <0.1	13 11	53 280	14	<0.5 1.3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
	0-0.1	Fill: Silty Clay Fill: Silty Sand	8 23	<0.4 <0.4	33 27	NA NA	170 56	79 32	<0.1 0.5	15 11	77 140	6 2.5	0.8 <0.5	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.1	Not Detected Not Detected
	0-0.05	Fill: Silty Sand	5 5	<0.4 <0.4	29 40	NA NA	61 110	19 6	0.1 <0.1	9	44 27	3.1 <0.05	0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
TP117	0.4-0.5	Silty Clay Fill: Silty Clay	5	<0.4	36	NA NA	66	16	<0.1	10	38	2.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Laboratory Duplicate Fill: Silty Clay	5 5	<0.4 <0.4	38 36	NA NA	67 62	15 21	<0.1	11 10	39 42	2.9	<0.5 1.8	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA Not Detected
TP119	0-0.1	Fill: Silty Clay	4	<0.4	44	NA NA	43	14	<0.1	10	37	2.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty Clay Silty Clay	5 5	<0.4 <0.4	37 45	NA NA	54 80	44 11	0.1 <0.1	9 8	36 19	27 <0.05	3.8 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
	0-0.1	Fill: Silty Clay Fill: Silty Clay	5 6	<0.4 <0.4	40 40	NA NA	64 86	14 18	<0.1 <0.1	10 9	38 42	3.5 3.4	<0.5 0.6	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
TP123	0-0.1	Silty Clay	12	<0.4	140	<1	310	6	<0.1	30	64	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP124 - [LAB_DUP]	0-0.1	Fill: Silty Clay Laboratory Duplicate	10 12	<0.4 <0.4	13 26	NA NA	120 180	9 12	<0.1 <0.1	5 9	27 42	<0.05 <0.05	<0.5 <0.5	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.4	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	Not Detected NA
	0-0.1	Laboratory Triplicate Fill: Silty Clay	11 19	<0.4 <0.4	17 31	NA NA	140 240	11 21	<0.1 <0.1	6 11	33 54	NA 2.8	NA <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA Not Detected
TP125	0.7-0.8	Silty Clay	9	<0.4	61	NA	210	10	<0.1	12	22	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP127	0.02-0.2	Fill: Sandy Silty Clay Fill: Silty Clay	4 6	<0.4	11 35	NA NA	84	4 34	<0.1 0.1	9	3 59	<0.05 1.5	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
	0.3-0.4	Silty Clay Fill: Silty Clay	6 7	<0.4 <0.4	71 45	NA NA	120 69	12 11	<0.1 <0.1	11 13	23 30	<0.05 0.4	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
TP129	0-0.1	Fill: Silty Clay	6	<0.4	53 56	NA NA	60 80	18	0.1	12	35	2.9	<0.5	NA	NA	NA <0.1	NA	NA	NA	NA	NA	NA	Not Detected
	0-0.1	Fill: Silty Clay Silty Clay	8	<0.4	110	NA <1	160	14 12	<0.1 <0.1	19	31 24	3.4 <0.05	0.5 <0.5	<0.1 NA	<0.1 NA	NA NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
	0-0.1	Fill: Silty Clay XW Andesite	6 NA	<0.4 NA	18 NA	NA NA	330 NA	470 9	<0.1 NA	9 NA	190 NA	<0.05 NA	<0.5 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
TP132	0-0.1	Fill: Silty Clay	5	<0.4	16	NA	210	32	<0.1	8	68	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty Clay Fill: Clayey Silt	<4 5	0.4 <0.4	25 22	NA NA	160	120 44	<0.1 <0.1	8	120	3.8 12	0.6 1.6	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
	0-0.1	Fill: Silty Clay Laboratory Duplicate	<4 5	<0.4 <0.4	25 31	NA NA	190 230	37 32	<0.1	9	71 90	7 16	1.1 2.5	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	Not Detected NA
TP136	0-0.1	Fill: Silty Clay	5	<0.4	15	NA	95	37	<0.1	7	100	0.4	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
	0.4-0.5	XW Andesite Fill: Silty Clay	5	<0.4 <0.4	26 20	NA NA	350 210	15 26	<0.1 <0.1	11 9	93 67	0.4	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
	0-0.1	Fill: Silty Clay Fill: Silty Clay	5 5	<0.4 <0.4	26 21	NA NA	260 210	43 98	<0.1 0.1	11 8	100 230	0.2 2.2	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	Not Detected Not Detected
TP139	0.2-0.3	Silty Clay	9	<0.4	37	NA	390	180	0.2	15	400	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0-0.1	Fill: Silty Clay Silty Clay	13 5	<0.4 <0.4	21	NA NA	96 480	23 6	<0.1 <0.1	8 12	76 51	0.05 <0.05	<0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
	0-0.1	Fill: Clayey Silt Fill: Silty Clay	<4 6	<0.4 <0.4	12 31	NA NA	28 54	32 27	<0.1 <0.1	5 7	46 29	2 19	<0.5 2.7	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
TP142	0.4-0.5	Silty Clay	7	<0.4	110	<1	150	14	<0.1	16	23	0.07	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0-0.1	Fill: Clayey Silt Laboratory Duplicate	5 6	<0.4 <0.4	20	NA NA	150 140	15 17	<0.1	7	40 41	6.1 6.8	0.8	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	Not Detected NA
	0.2-0.3	Fill: Silty Clay Fill: Silty Sand	7	<0.4 <0.4	37 27	NA NA	320 50	11 54	<0.1 <0.1	12 8	32 32	0.4	<0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected Not Detected
TP144	0.2-0.3	Fill: Silty Clayey Sand	14	<0.4	10	NA	6	6	<0.1	3	5	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
	0.4-0.5	Fill: Silty Gravelly Clay Silty Clay	6	<0.4 <0.4	44 81	NA NA	58 94	18 12	<0.1	10	26 20	0.3 0.4	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
	0-0.05	Fill: Gravelly Silty Clay Silty Clay	7	<0.4 <0.4	53 21	NA NA	170 500	14 4	<0.1 <0.1	13 10	51 25	<0.05 <0.05	<0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
TP147	0-0.1	Fill: Clayey Silt	<4	<0.4	19	NA	15	13	<0.1	4	26	2.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0.6-0.7	Laboratory Duplicate Fill: Sandy Clay	<4 7	<0.4 <0.4	14 28	NA NA	13 130	12 48	<0.1 <0.1	18	25 170	1.5 95	<0.5 11	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA Not Detected
	0-0.1	Fill: Clayey Silt Fill: Silty Clay	<4 8	<0.4 <0.4	12 19	NA NA	14 25	8 48	<0.1 <0.1	3 6	25 57	<0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
TP149	0.5-0.6	Fill: Silty Clay	12	<0.4	62	NA	120	29	<0.1	24	68	9.8	1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
	0.7-0.8	Silty Clay Fill: Silty Clay	9	<0.4 <0.4	110 46	<1 NA	180 86	14 17	<0.1 <0.1	22 14	30 36	<0.05 4.1	<0.5 0.6	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
	0-0.1 0-0.1	Fill: Silty Clay	7 14	<0.4 <0.4	21 34	NA NA	11 57	15 14	<0.1 <0.1	6 17	19 44	<0.05 2.9	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	Not Detected Not Detected
TP153	0-0.1	Fill: Silty Sandy Clay	5	<0.4	29	NA	39	20	<0.1	8	34	190	24	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
TP154	0.6-0.7	Silty Clay Fill: Gravelly Clayey Sand	9 5	<0.4 <0.4	120 18	<1 NA	160 27	11 11	<0.1 <0.1	16 5	23 21	<0.05 15	<0.5 2.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
	0-0.1	Laboratory Duplicate Fill: Silty Sand	6 10	<0.4 <0.4	22 13	NA NA	32 12	13 5	<0.1 <0.1	6 2	24 6	19 19	2.5 2.9	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA Not Detected
вн155	0.2-0.5	Fill: Silty Clay	7	<0.4	62	NA	140	77	0.2	19	110	200	18	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
TP156	0.5-0.8	Silty Clay Fill: Silty Clay	7 8	<0.4 <0.4	110 48	<1 NA	160 140	13 39	<0.1 <0.1	21 14	25 110	<0.05 9.2	<0.5 1.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA Not Detected
	0.03-0.3	Fill: Silty Clay Fill: Silty Sandy Clay	10 10	<0.4 <0.4	12 19	NA NA	21 230	16 26	<0.1	8	290 39	4.2 3.5	0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
BH158	0.3-0.6	XW Andesite	6	<0.4	15	NA	370	3	<0.1	10	33	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TP159 - [LAB_DUP]	0-0.1	Fill: Clayey Silt Laboratory Duplicate	<4 <4	<0.4 <0.4	11 14	NA NA	19 19	13 14	<0.1 <0.1	4	37 35	<0.05 <0.05	<0.5 <0.5	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	Not Detected NA
	0-0.1	Fill: Silty Clay Silty Clay	5 6	<0.4 <0.4	19 18	NA NA	270 440	69 5	<0.1 <0.1	8 10	77 22	2.8 <0.05	<0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
TP161	0-0.1	Fill: Silty Clay	7	<0.4	21	NA	160	35	<0.1	7	57	8.6	1.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0.04-0.2 1.2-1.4	Fill: Silty Clay Silty Clay	7	<0.4 <0.4	17 74	NA NA	250 130	6 12	<0.1 <0.1	8 11	26 21	120 2.8	18 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
TP163	0-0.1 0-0.1	Fill: Silty Clay Duplicate of TP112	7	<0.4 <0.4	61 22	NA NA	66 290	13 39	<0.1 <0.1	14 10	22 71	5 1.6	0.7 <0.5	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 NA	Not Detected NA
SDUP101- [LAB_DUP]	0-0.1	Laboratory Duplicate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.1	NA	NA
	0-0.1	Duplicate of TP111 Duplicate of TP110	5 16	<0.4 <0.4	21 61	NA NA	120 260	7	<0.1 <0.1	8 14	34 36	3.4 <0.05	0.6 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA NA	NA NA
SDUP104	0-0.1	Duplicate of TP109	8	<0.4	63	NA	140	5	<0.1	14	33	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP106	0-0.1	Duplicate of TP107 Duplicate of TP102	5 5	<0.4 <0.4	39 32	NA NA	69 52	15 18	<0.1 <0.1	11 9	41 31	2.5 23	<0.5 3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	0-0.05 0-0.1	Duplicate of TP116 Duplicate of TP145	6 8	<0.4 <0.4	33 49	NA NA	80 65	21 21	0.1 <0.1	10 10	49 27	3.1 0.5	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA NA
SDUP109	0-0.1	Duplicate of TP143	5	<0.4	20	NA	130	16	<0.1	7	39	8.1	1.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
SDUP110	0-0.1	Laboratory Duplicate Duplicate of TP138	5 7	<0.4 <0.4	20 40	NA NA	140 460	16 67	<0.1 0.1	7 16	40 150	7.4 0.3	1 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA NA
FCF101	-	Fragment	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
	es		110	110	110	6	110	111	110	110	110	109	109	46	46	46	46	46	46	46 <pql< td=""><td>47</td><td>44</td><td>67</td></pql<>	47	44	67
Total Number of Sample Maximum Value			23	0.4	140	<pql< td=""><td>500</td><td>470</td><td>0.5</td><td>30</td><td>400</td><td>200</td><td>24</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.5</td><td><pql< td=""><td><pql< td=""><td></td><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	500	470	0.5	30	400	200	24	<pql< td=""><td><pql< td=""><td><pql< td=""><td>0.5</td><td><pql< td=""><td><pql< td=""><td></td><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0.5</td><td><pql< td=""><td><pql< td=""><td></td><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>0.5</td><td><pql< td=""><td><pql< td=""><td></td><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	0.5	<pql< td=""><td><pql< td=""><td></td><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td></td><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<>		<pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<>	<pql< td=""><td>Detected</td></pql<>	Detected

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field i
Envirolab Services If 2013 HSL Land Use Cate					25	50	0.2 MSI-A/B: 10	0.5 W/HIGH DENSITY	1 PESIDENTIAL	1	1	ppr
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category			nsc-sys. co	Wymon belief	REJIDENTIAL			
TP101 TP101	0-0.1 0.4-0.5	Fill: Silty Clay	0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1	<1	1.7
TP102	0-0.1	Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand	<25	<50	< 0.2	<0.5	<1	<1	<1	1.5
TP102 - [LAB_DUP] TP103	0-0.1	Laboratory Duplicate Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 56	<0.2	<0.5 <0.5	<1 <1	<1	<1	N/ 1.4
TP104 TP105	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	1.4
TP106	0-0.1	Fill: Silty Clay	0m to <1m	Sand	<25	<50	< 0.2	<0.5	<1	<1	<1	1.3
TP106 TP107	0.4-0.5	Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	1.9
TP108 TP108	0-0.1	Fill: Silty Clay Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	0.8
TP109 TP110	0-0.1 0-0.1	Fill: Silty Clay Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	1.4
TP110 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	<25	<50	< 0.2	< 0.5	<1	<1	<1	N/
TP111 TP112	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	1.
TP113 TP113	0.0.1	Fill: Silty Clay Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1 <1	6.4 7.9
TP114 TP115	0-0.1	Fill: Silty Clay	0m to <1m	Sand Sand	<25 <25	<50 73	<0.2 <0.2	<0.5 <0.5	<1	<1	<1	2.1
TP116	0-0.05	Fill: Silty Sand Fill: Silty Sand	0m to <1m 0m to <1m	Sand	<25	120	< 0.2	< 0.5	<1	<1	<1	4.3
TP116 TP117	0.4-0.5	Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	9.5
TP117 - [LAB_DUP] TP118	0-0.1	Laboratory Duplicate	0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	<1	N/ 1.5
TP119	0-0.1	Fill: Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand	<25	<50	< 0.2	< 0.5	<1	<1	<1	4.3
TP120 TP120	0.4-0.5	Fill: Silty Clay Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	5.2 8.6
TP121 TP122	0-0.1	Fill: Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	37 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	<1	4.3
TP123	0-0.1	Silty Clay	0m to <1m	Sand	<25	<50	< 0.2	< 0.5	<1	<1	<1	4.2
TP124 TP124 - [LAB_DUP]	0-0.1 0-0.1	Fill: Silty Clay Laboratory Duplicate	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	1 NA
TP125 TP125	0-0.1 0.7-0.8	Fill: Silty Clay Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	1.
BH126 TP127	0.02-0.2	Fill: Sandy Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2	<0.5	<1	41	41	2.5
TP127	0.3-0.4	Silty Clay	0m to <1m	Sand	<25	<50	< 0.2	< 0.5	<1	<1	<1	8.7
TP128 TP129	0-0.1	Fill: Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1	<1	7.5
TP130 TP130	0.0.1	Fill: Silty Clay Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	9.8
TP131 TP132	0-0.1 0-0.1	Fill: Silty Clay	0m to <1m	Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1	<1	1.8
TP133	0-0.1	Fill: Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25	<50	< 0.2	< 0.5	<1	<1	<1 <1	2.1
TP134 TP135	0-0.1	Fill: Clayey Silt Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	2.3
TP135 - [LAB_DUP] TP136	0-0.1 0-0.1	Laboratory Duplicate Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1	<1	N/ 1.5
TP136	0.4-0.5	XW Andesite	0m to <1m	Sand	<25	<50	< 0.2	< 0.5	<1	<1	<1	2.2
TP137 TP138	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	0.8
TP139 TP139	0-0.1 0.2-0.3	Fill: Silty Clay Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1 <1	2.2 1.9
TP140	0-0.1	Fill: Silty Clay	0m to <1m	Sand	<25	<50	< 0.2	< 0.5	<1	<1	<1	2.4
TP140 TP141	0.4-0.5 0-0.1	Silty Clay Fill: Clayey Silt	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	3.5
TP142 TP142	0.4-0.5	Fill: Silty Clay Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	7.3
TP143	0-0.1	Fill: Clayey Silt	0m to <1m	Sand	<25	<50	< 0.2	< 0.5	<1	<1	<1	2.9
TP143 - [LAB_DUP] TP143	0-0.1 0.2-0.3	Laboratory Duplicate Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	N.4 3.0
TP144 TP144	0.2-0.3	Fill: Silty Sand Fill: Silty Clayey Sand	0m to <1m 0m to <1m	Sand Sand	<25 <25	210 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1 <1	1.7
TP145 TP145	0-0.1 0.4-0.5	Fill: Silty Gravelly Clay Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	<1	2.5
TP146	0-0.05	Fill: Gravelly Silty Clay	0m to <1m	Sand	<25	<50	<0.2	< 0.5	<1	<1	<1	7.2
TP146 TP147	0.3-0.4	Silty Clay Fill: Clayey Silt	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	7.4
TP147 - [LAB_DUP] TP147	0.6-0.7	Laboratory Duplicate Fill: Sandy Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1	<1	NA 2.8
TP148 TP149	0-0.1	Fill: Clayey Silt Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1	41	1.8
TP149	0.5-0.6	Fill: Silty Clay	0m to <1m	Sand	<25	<50	< 0.2	< 0.5	<1	<1	<1	0.8
TP149 TP150	0.7-0.8 0-0.1	Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	0.9
TP151 TP152	0-0.1	Fill: Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	1
TP153	0-0.1	Fill: Silty Sandy Clay	0m to <1m	Sand	<25	<50	< 0.2	< 0.5	<1	<1	<1	3.3
TP153 TP154	0.6-0.7 0-0.1	Silty Clay Fill: Gravelly Clayey Sand	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	3.1
TP154 - [LAB_DUP] BH155	0.05-0.2	Laboratory Duplicate Fill: Silty Sand	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	N/4.3
BH155 BH155	0.2-0.5 0.5-0.8	Fill: Silty Clay Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	4.
TP156	0-0.1	Fill: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	< 0.5	<1	<1	<1	0.4
BH157 BH158	0.03-0.3	Fill: Silty Clay Fill: Silty Sandy Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	4.
BH158 TP159	0.3-0.6 0-0.1	XW Andesite Fill: Clayey Silt	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	8. 2.
TP159 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	41	4	41	N/
TP160 TP160	0.2-0.3	Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	5.3
TP161 BH162	0-0.1 0.04-0.2	Fill: Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	2.4
BH162 TP163	1.2-1.4	Silty Clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2	<0.5	<1 <1	41	<1	3.
SDUP101	0-0.1	Fill: Silty Clay Duplicate of TP112	0m to <1m	Sand	<25	<50	<0.2	< 0.5	<1	<1	<1	N/
SDUP102 SDUP103	0-0.1 0-0.1	Duplicate of TP111 Duplicate of TP110	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1 <1	NA NA
SDUP104 SDUP105	0-0.1	Duplicate of TP109 Duplicate of TP107	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	4	<1	<1	NA NA
SDUP106	0-0.1	Duplicate of TP102	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	N/
SDUP107 SDUP108	0-0.05 0-0.1	Duplicate of TP116 Duplicate of TP145	0m to <1m 0m to <1m	Sand Sand	71 <25	150 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1 <1	NJ NJ
SDUP109 DUP109 - [LAB_DUP]	0-0.1	Duplicate of TP143 Laboratory Duplicate	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	N/
SDUP110	0-0.1	Duplicate of TP138	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	41	N/
al Number of Samples					109	109	109	109	109	109	109	85
ximum Value					71	210	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>22.</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>22.</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>22.</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>22.</td></pql<></td></pql<>	<pql< td=""><td>22.</td></pql<>	22.

L SOIL ASSESSMENT CRITE

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthale
TP101	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP101	0.4-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP102	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP102 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP103	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45 45	110 110	0.5	160 160	55 55	40 40	3
TP104 TP105	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Clay	0m to <1m 0m to <1m	Sand Sand	45	110	0.5	160	55	40	3
TP105	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP106	0.4-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP106	0.4-0.5	Fill: Silty Clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
TP109	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP108	0.4-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP109	0.0.1	Fill: Silty Clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
TP110	0-0.1	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP110 - [LAB DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP111	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP112	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP113	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP113	0.9-1.0	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP114	0.0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP115	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55 55	40	3
TP116	0-0.05	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP116	0.4-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP117	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP117 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP118	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP119	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP120	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP120	0.4-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP121	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP122	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP123	0-0.1	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP124	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP124 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP125	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP125	0.7-0.8	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH126	0.02-0.2	Fill: Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP127	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP127	0.3-0.4	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP128	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP129	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP130	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP130	0.4-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP131	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP132	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP133	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP134	0-0.1	Fill: Clayey Silt	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP135	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP135 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP136	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP136	0.4-0.5	XW Andesite	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP137	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP138	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP139	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP139	0.2-0.3	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP140	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP140	0.4-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP141	0-0.1	Fill: Clayey Silt	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP142	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP142	0.4-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP143	0-0.1	Fill: Clayey Silt	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP143 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP143	0.2-0.3	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP144	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP144	0.2-0.3	Fill: Silty Clayey Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP145	0-0.1	Fill: Silty Gravelly Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP145	0.4-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP146	0-0.05	Fill: Gravelly Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP146	0.3-0.4	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP147	0-0.1	Fill: Clayey Silt	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP147 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP147	0.6-0.7	Fill: Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP148	0-0.1	Fill: Clayey Silt	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP149	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP149	0.5-0.6	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP149	0.7-0.8	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP150	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP151	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP152	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP153	0-0.1	Fill: Silty Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP153	0.6-0.7	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP154	0-0.1	Fill: Gravelly Clayey Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP154 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH155	0.05-0.2	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH155	0.2-0.5	Fill: Silty Clay	0m to <1m	Sand	45 45	110	0.5	160 160	55 55	40 40	3
BH155	0.5-0.8	Silty Clay	0m to <1m	Sand							3
TP156	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH157	0.03-0.3	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH158	0.04-0.3	Fill: Silty Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH158	0.3-0.6	XW Andesite	0m to <1m	Sand	45 45	110 110	0.5	160 160	55 55	40 40	3
TP159	0-0.1	Fill: Clayey Silt	0m to <1m	Sand							3
TP159 - [LAB_DUP] TP160	0-0.1	Laboratory Duplicate	0m to <1m	Sand Sand	45 45	110 110	0.5	160	55	40 40	3
TP160 TP160	0-0.1	Fill: Silty Clay	0m to <1m		45 45		0.5	160	55	40	3
		Silty Clay Fill: Silty Clay	0m to <1m	Sand	45 45	110					3
TP161	0-0.1	FIII: Sirty Clay	0m to <1m	Sand	45 45	110 110	0.5	160 160	55 55	40 40	3
BH162	0.04-0.2	Fill: Silty Clay	0m to <1m	Sand							3
BH162	1.2-1.4	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP163	0-0.1	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP101	0-0.1	Duplicate of TP112	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP102	0-0.1	Duplicate of TP111	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP103	0-0.1	Duplicate of TP110	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP104	0-0.1	Duplicate of TP109	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP105	0-0.1	Duplicate of TP107	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP106	0-0.1	Duplicate of TP102	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP107	0-0.05	Duplicate of TP116	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP108	0-0.1	Duplicate of TP145	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP109	0-0.1	Duplicate of TP143	0m to <1m	Sand	45	110	0.5	160	55	40	3
	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	2
SDUP109 - [LAB_DUP] SDUP110	0-0.1	Duplicate of TP138	0m to <1m	Saliu	43	110		160	55	40	3

Copyright JK Environm

			C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (I
L - Envirolab Services PM 2013 Land Use Cat	egory		25	50	100 D & PUBLIC OPEN SP.	100 ACE
Sample Reference	Sample Depth	Soil Texture				
TP101 TP101	0-0.1 0.4-0.5	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP102	0-0.1	Coarse Coarse	<25 <25	<50 <50	210 210	<100 <100
TP102 - [LAB_DUP] TP103	0-0.1 0-0.1	Coarse	<25	56	340	160
TP104 TP105	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	140 180	<100 <100
TP106	0-0.1	Coarse	<25	<50	<100	<100
TP106 TP107	0.4-0.5 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP108 TP108	0-0.1	Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP109	0-0.1	Coarse	<25	<50	<100	<100
TP110 TP110 - [LAB_DUP]	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP111 TP112	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	230 <100	<100 <100
TP113	0-0.1	Coarse	<25	<50	<100	<100
TP113 TP114	0.9-1.0 0-0.1	Coarse Coarse	<25 <25	<50 <50	100 <100	<100 <100
TP115 TP116	0-0.1 0-0.05	Coarse Coarse	<25 <25	73 120	620 720	250 240
TP116	0.4-0.5	Coarse	<25	<50	<100	<100
TP117 TP117 - [LAB_DUP]	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 120	<100 <100
TP118 TP119	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	140 <100	<100 <100
TP120	0-0.1	Coarse	<25	<50	130	<100
TP120 TP121	0.4-0.5 0-0.1	Coarse Coarse	<25 37	<50 <50	<100 170	<100 <100
TP122 TP123	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	160 <100	<100 <100
TP124	0-0.1	Coarse	<25	<50	<100	<100
TP124 - [LAB_DUP] TP125	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	100 150	<100 <100
TP125 BH126	0.7-0.8	Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP127	0-0.1	Coarse	<25	<50	<100	<100
TP127 TP128	0.3-0.4	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP129 TP130	0-0.1	Coarse	<25	<50 <50	<100	<100
TP130	0-0.1 0.4-0.5	Coarse Coarse	<25 <25	<50	<100 <100	<100 <100
TP131 TP132	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 130	<100 <100
TP133	0-0.1	Coarse	<25	<50	<100	<100
TP134 TP135	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	100 <100	<100 <100
TP135 - [LAB_DUP] TP136	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 230	<100 240
TP136	0.4-0.5	Coarse	<25	<50	<100	<100
TP137 TP138	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP139 TP139	0-0.1 0.2-0.3	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP140	0-0.1	Coarse	<25	<50	<100	<100
TP140 TP141	0.4-0.5 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP142 TP142	0-0.1	Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP143	0-0.1	Coarse	<25	<50	<100	<100
TP143 - [LAB_DUP] TP143	0.0.1	Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP144 TP144	0-0.1 0.2-0.3	Coarse Coarse	<25 <25	210 <50	1100 <100	440 <100
TP145	0-0.1	Coarse	<25	<50	100	<100
TP145 TP146	0.4-0.5	Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP146 TP147	0.3-0.4	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP147 - [LAB_DUP]	0-0.1	Coarse	<25	<50	<100	<100
TP147 TP148	0.6-0.7 0-0.1	Coarse Coarse	<25 <25	<50 <50	160 <100	<100 <100
TP149 TP149	0-0.1	Coarse	<25 <25	<50 <50	160 <100	260 <100
TP149	0.7-0.8	Coarse Coarse	<25	<50	<100	<100
TP150 TP151	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP152 TP153	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 400	<100 160
TP153	0.6-0.7	Coarse	<25	<50	<100	<100
TP154 TP154 - [LAB_DUP]	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
BH155 BH155	0.05-0.2	Coarse	<25 <25	<50 <50	<100 <100 400	<100 <100
BH155	0.5-0.8	Coarse	<25	<50	<100	<100
TP156 BH157	0.03-0.3	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
BH158	0.04-0.3	Coarse	<25	<50	<100	<100
BH158 TP159	0.3-0.6 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP159 - [LAB_DUP] TP160	0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP160	0.2-0.3	Coarse	<25	<50	<100	<100
TP161 BH162	0-0.1 0.04-0.2	Coarse Coarse	<25 <25	<50 <50	140 220	<100 <100
BH162 TP163	1.2-1.4 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
SDUP101	0-0.1	Coarse	<25	<50	<100	<100
SDUP102 SDUP103	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
SDUP104 SDUP105	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
SDUP106	0-0.1	Coarse	<25	<50	180	<100
SDUP107 SDUP108	0-0.05 0-0.1	Coarse Coarse	71 <25	150 <50	830 <100	240 <100
SDUP109	0-0.1	Coarse	<25	<50	140	<100
DUP109 - [LAB_DUP] SDUP110	0-0.1 0-0.1	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
al Number of Sample			109	109	109	109

MANAGEMENT LIMIT ASSESSMENT CRITERIA

PHO10	10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
	10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
TF100	10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
PF104	10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
	10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
P100	10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
	10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
	10000 10000 10000 10000 10000 10000 10000 10000 10000
	10000 10000 10000 10000 10000 10000 10000 10000
	10000 10000 10000 10000 10000 10000 10000 10000
PF110 0-0.1 Coarse 700 1000 2500	10000 10000 10000 10000 10000 10000
TF111	10000 10000 10000 10000 10000
	10000 10000 10000 10000
TP111	10000 10000 10000
	10000 10000
	10000
TP116 O-0.05 Coarse 700 1000 2500 TP116 O-0.05 Coarse 700 1000 2500 TP117 O-0.1 Coarse 700 1000 2500 TP117 (IAB_DUP) O-0.1 Coarse 700 1000 2500 TP118 O-0.1 TP188 O-0.1 O-0.	
TP116 0.4-0.5 Coarse 700 1000 2500 TP17 0-0.1 Coarse 700 1000 2500 TP117-[IAB_DUP] 0-0.1 Coarse 700 1000 2500 TP118 0-0.1 Coarse 700 1000 2500	10000
TP117 0-0.1 Coarse 700 1000 2500 TP117- [LAB_DUP] 0-0.1 Coarse 700 1000 2500 TP118 0-0.1 Coarse 700 1000 2500	10000
TP117 - [LAB_DUP] 0-0.1 Coarse 700 1000 2500 TP118 0-0.1 Coarse 700 1000 2500	10000
TP118 0-0.1 Coarse 700 1000 2500	10000
	10000
TP119 0-0.1 Coarse 700 1000 2500	10000
TP120 0-0.1 Coarse 700 1000 2500	10000
TP120 0.4-0.5 Coarse 700 1000 2500 TP121 0-0.1 Coarse 700 1000 2500	10000 10000
TP121 0-0.1 Coarse 700 1000 2500 TP122 0-0.1 Coarse 700 1000 2500	10000
TP123 0-0.1 Coarse 700 1000 2500	10000
TP124 0-0.1 Coarse 700 1000 2500	10000
TP124 - [LAB_DUP] 0-0.1 Coarse 700 1000 2500	10000
TP125 0-0.1 Coarse 700 1000 2500 TP125 0.7-0.8 Coarse 700 1000 2500	10000
TP125 0.7-0.8 Coarse 700 1000 2500 BH126 0.02-0.2 Coarse 700 1000 2500	10000
TP127 0-0.1 Coarse 700 1000 2500	10000
TP127 0.3-0.4 Coarse 700 1000 2500	10000
TP128 0-0.1 Coarse 700 1000 2500	10000
TP129 0-0.1 Coarse 700 1000 2500	10000
TP130 0-0.1 Coarse 700 1000 2500 TP130 0.4-0.5 Coarse 700 1000 2500	10000
TP130 0.4-0.5 Coarse 700 1000 2500 TP131 0-0.1 Coarse 700 1000 2500	10000
TP132 0-0.1 Coarse 700 1000 2500	10000
TP133 0-0.1 Coarse 700 1000 2500	10000
TP134 0-0.1 Coarse 700 1000 2500	10000
TP135 0-0.1 Coarse 700 1000 2500 TP135 - [LAB DUP] 0-0.1 Coarse 700 1000 2500	10000
TP136 0-0.1 Coarse 700 1000 2500	10000
TP136 0.4-0.5 Coarse 700 1000 2500	10000
TP137 0-0.1 Coarse 700 1000 2500	10000
TP138 0-0.1 Coarse 700 1000 2500 TP139 0-0.1 Coarse 700 1000 2500	10000
TP139 0-0.1 Coarse 700 1000 2500 TP139 0.2-0.3 Coarse 700 1000 2500	10000
TP140 0-0.1 Coarse 700 1000 2500	10000
TP140 0.4-0.5 Coarse 700 1000 2500	10000
TP141 0-0.1 Coarse 700 1000 2500	10000
TP142 0-0.1 Coarse 700 1000 2500 TP142 0.4-0.5 Coarse 700 1000 2500	10000
TP142 0.4-0.5 Coarse 700 1000 2500 TP143 0-0.1 Coarse 700 1000 2500	10000
TP143 - [LAB DUP] 0-0.1 Coarse 700 1000 2500	10000
TP143 0.2-0.3 Coarse 700 1000 2500	10000
TP144 0-0.1 Coarse 700 1000 2500	10000
TP144 0.2-0.3 Coarse 700 1000 2500 TP145 0-0.1 Coarse 700 1000 2500	10000 10000
TP14S 0.4-0.5 Coarse 700 1000 2500	10000
TP146 0-0.05 Coarse 700 1000 2500	10000
TP146 0.3-0.4 Coarse 700 1000 2500	10000
TP147 0-0.1 Coarse 700 1000 2500 TP147-[LAB DUP] 0-0.1 Coarse 700 1000 2500	10000
TP147 - [LAB_DUP] 0-0.1 Coarse 700 1000 2500 TP147 0.6-0.7 Coarse 700 1000 2500	10000
TP148 0-0.1 Coarse 700 1000 2500	10000
TP149 0-0.1 Coarse 700 1000 2500	10000
TP149 0.5-0.6 Coarse 700 1000 2500	10000
TP149 0.7-0.8 Coarse 700 1000 2500 TP150 0-0.1 Coarse 700 1000 2500	10000
TP150 0-0.1 Coarse 700 1000 2500 TP151 0-0.1 Coarse 700 1000 2500	10000
TP152 0-0.1 Coarse 700 1000 2500	10000
TP153 0-0.1 Coarse 700 1000 2500	10000
TP153 0.6-0.7 Coarse 700 1000 2500	10000
TP154 0-0.1 Coarse 700 1000 2500 TP154 - [LAB DUP] 0-0.1 Coarse 700 1000 2500	10000 10000
TP154 - [LAB_DUP] 0-0.1 Coarse 700 1000 2500 BH155 0.05-0.2 Coarse 700 1000 2500	10000
BH155 0.2-0.5 Coarse 700 1000 2500	10000
BH155 0.5-0.8 Coarse 700 1000 2500	10000
TP156 0-0.1 Coarse 700 1000 2500	10000
	10000
BH157 0.03-0.3 Coarse 700 1000 2500	10000 10000
BH158 0.04-0.3 Coarse 700 1000 2500	10000
BH1S8 0.04-0.3 Coarse 700 1000 2500 BH1S8 0.3-0.6 Coarse 700 1000 2500 TP1S9 0-0.1 Coarse 700 1000 2500 TP1S9-[LAB DUP] 0-0.1 Coarse 700 1000 2500	10000
BH1SS 0.04-0.3 Coarse 700 1000 2500 BH1SS 0.3-0.6 Coarse 700 1000 2500 TP159 0-0.1 Coarse 700 1000 2500 TP159-LB2, DUPJ 0-0.1 Coarse 700 1000 2500 TP160 0-0.1 Coarse 700 1000 2500	10000
BH158 0.04-0.3 Cearse 700 1000 2500 BH158 0.3-0.6 Cearse 700 1000 2500 Cearse 700 1000 2500 Cearse 700 1000 2500 Cearse 700 1000 2500 TP159 1.04 DU Cearse 700 1000 2500 2500 Cearse 700 1000 2500 Cearse 700 1000 2500 2500 Cearse 700 1000 2500 Cearse 700 Cearse 700 1000 2500 Cearse 700 1000 2500 Cearse 700 1000 2500 Cearse 700 Cearse 700 1000 2500 Cearse 700 Cears	10000 10000
BH158 0.04-0.3 Coarse 700 1000 2500 BH158 0.3-0.6 Coarse 700 1000 2500 T79159-[MLD, DUP] 0-0.1 Coarse 700 1000 2500 T79159-[MLD, DUP] 0-0.1 Coarse 700 1000 2500 T79159 (100 0.2.0.3 Coarse 700 1000 2500 T79160 0.2.0.3 Coarse 700 1000 2500 T79161 0.2.0.3 Coarse 700 1000 2500	10000 10000 10000
BH158 0.04-0.3 Coarse 700 1000 2500 BH159 0.3-0.6 Coarse 700 1000 2500 TP159 0-0.1 Cearse 700 1000 2500 TP150 0-0.1 Cearse 700 1000 2500 TP160 0-0.1 Cearse 700 1000 2500 TP161 0-0.1 Cearse 700 1000 2500 TP161 0-0.1 Cearse 700 1000 2500 BH162 0.04-0.2 Cearse 700 1000 2500	10000 10000 10000 10000
BH158 0.04-0.3 Cause 700 1000 2500 BH158 0.3-0.6 Cause 700 1000 2500 TP159 0-0.1 Cause 700 1000 2500 TP159 0-0.1 Cause 700 1000 2500 TP150 0-0.1 Cause 700 1000 2500 TP150 0-0.1 Cause 700 1000 2500 TP150 0-0.2 Cause 700 1000 2500 BH162 0-0.4 Cause 700 1000 2500 BH162 0-0.4 Cause 700 1000 2500 BH162 0-0.4 Cause 700 1000 2500	10000 10000 10000 10000 10000
BH158 0.04-0.3 Cause 700 1000 2500 BH158 0.3-0.6 Course 700 1000 2500 TP159 0-0.1 Cause 700 1000 2500 TP159 0-0.1 Cause 700 1000 2500 TP150 0-0.1 Cause 700 1000 2500 TP150 0-0.1 Cause 700 1000 2500 TP160 0.4-0.3 Cause 700 1000 2500 TP161 0.4-0.1 Cause 700 1000 2500 TP161 0.4-0.1 Cause 700 1000 2500 TP161 0.4-1 Cause 700 1000 2500 TP161 0.4-1 Cause 700 1000 2500	10000 10000 10000 10000 10000 10000 10000
BH158 0.04-0.3 Castre 700 1000 2500	10000 10000 10000 10000 10000 10000 10000 10000
BH158 0.04-0.3 Carse 700 1000 2500 BH158 0.3-6.6 Carse 700 1000 2500 TP159 0-0.1 Carse 700 1000 2500 TP159 1.04 DUP 0.0.1 Carse 700 1000 2500 TP150 0-0.1 Carse 700 1000 2500 TP150 0-0.1 Carse 700 1000 2500 TP150 0-1.0 Carse 700 1000 2500 TP151 0-0.1 Carse 700 1000 2500 TP151 0-0.1 Carse 700 1000 2500 TP151 0-0.1 Carse 700 1000 2500 SH152 0.04-0.2 Carse 700 1000 2500 SH153 0.04-0.2 Carse 700 1000 2500 SH154 0.04-0.2 Carse 700 1000 2500 SH155 0.05-0.0 Carse 700 1000 2500 SUP101 0-0.1 Carse 700 1000 2500 SUP101 0-0.1 Carse 700 1000 2500 SUP101 0-0.1 Carse 700 1000 2500	10000 10000 10000 10000 10000 10000 10000 10000
BH158 0.04-0.3 Coarse 700 1000 2500 BH158 0.3-0.6 Coarse 700 1000 2500 TP159-[ML] DUP] 0-0.1 Coarse 700 1000 2500 TP159-[ML] DUP] 0-0.1 Coarse 700 1000 2500 TP159-[ML] DUP] 0-0.1 Coarse 700 1000 2500 TP150 0.2-0.3 Coarse 700 1000 2500 BH162 0.04-0.2 Coarse 700 1000 2500 BH162 0.04-0.2 Coarse 700 1000 2500 TP168 0.01 Coarse 700 1000 2500 SDUP101 0-0.1 Coarse 700 1000 2500	10000 10000 10000 10000 10000 10000 10000 10000 10000
BH158 0.04-0.3 Cause 700 1000 2500 BH158 0.3-6.6 Cause 700 1000 2500 TP159 0-0.1 Cause 700 1000 2500 TP159 1.04 DUP 0.0.1 Cause 700 1000 2500 TP150 0-0.1 Cause 700 1000 2500 TP150 0-0.1 Cause 700 1000 2500 TP150 0-1.0 Cause 700 1000 2500 TP151 0-0.1 Cause 700 1000 2500 SUBJECT 0.0 Cause 700 1000 2500 SUBJECT 0.0 0.1 Cause 700 1000 2500 SUBJECT 0.0 0.1 Cause 700 1000 2500 SUBJECT 0.0 0.1 Cause 700 1000 2500 SUBJECT 0.0 1000 2500 SUBJECT 0.0 1 Cause 700 1000 2500	10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
BH158 0.04-0.3 Coarse 700 1000 2500 BH158 0.3-0.6 Coarse 700 1000 2500 TF159 0-0.1 Coarse 700 1000 2500 TF159-ILMB_UPU 0-0.1 Coarse 700 1000 2500 TF159 0-0.1 Coarse 700 1000 2500 TF150 0-0.1 Coarse 700 1000 2500 BH162 0.04-0.2 Coarse 700 1000 2500 BH162 0.04-0.2 Coarse 700 1000 2500 BH162 0.04-0.2 Coarse 700 1000 2500 SH163 0-0.1 Coarse 700 1000 2500 SUP101 0-0.1 Coarse 700 1000 2500	10000 10000 10000 10000 10000 10000 10000 10000 10000
BH158 0.04-0.3 Cause 700 1000 2500 BH158 0.3-0.6 Cause 700 1000 2500 BH158 0.3-0.6 Cause 700 1000 2500 TF159 CAUSE 700 1000 2500 TF159 CAUSE 700 1000 2500 TF150 CAUSE 700 1000 2500 TF150 CAUSE 700 1000 2500 CAUSE 700 1000 2500 CAUSE 700 1000 2500 CAUSE 700	10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
BH158 0.04-0.3 Carse 700 1000 2500 BH158 0.3-6.6 Carse 700 1000 2500 TP159 0-0.1 Carse 700 1000 2500 TP159 1.04 DUP 0.0.1 Carse 700 1000 2500 TP150 0.0.1 Carse 700 1000 2500 TP150 0.0.1 Carse 700 1000 2500 TP150 0.0.1 Carse 700 1000 2500 BH162 0.04-0.2 Carse 700 1000 2500 BH163 0.04-0.2 Carse 700 1000 2500 BH163 0.04-0.2 Carse 700 1000 2500 SUP100 0.00 0.00 0.00 0.00 0.00 0.00 0.00	10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

TABLE S4
SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA
All data in mg/kg unless stated otherwise

L - Envirolab Services C 2011 -Direct contact	t Critoria	C ₆ -C ₁₀ 25 4,400	>C ₁₀ -C ₁₆ 50 3,300	>C ₁₆ -C ₃₄ 100 4,500	>C ₃₄ -C ₄₀ 100 6,300	0.2 100	0.5 14,000	1 4,500	1 12,000	1 1,400	
e Use		4,400	3,300				DIRECT SOIL CO		12,000	1,400	
Sample Reference TP101	Sample Depth 0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1
TP101	0.4-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP102 TP102 - [LAB_DUP]	0-0.1 0-0.1	<25 <25	<50 <50	210 210	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP103	0-0.1	<25	56	340	160	<0.2	<0.5	<1	<1	<1	
TP104 TP105	0-0.1	<25 <25	<50 <50	140 180	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	l.,
TP105	0-0.1 0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP106	0.4-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP107 TP108	0-0.1 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP108	0.4-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2
TP109 TP110	0-0.1	<25	<50	<100	<100 <100	<0.2 <0.2	<0.5	<1 <1	<1 <1	<1	
TP110 - [LAB_DUP]	0-0.1 0-0.1	<25 <25	<50 <50	<100 <100	<100	<0.2	<0.5 <0.5	<1	<1	<1 <1	
TP111	0-0.1	<25	<50	230	<100	<0.2	<0.5	<1	<1	<1	
TP112 TP113	0-0.1 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	1
TP113	0.9-1.0	<25	<50	100	<100	<0.2	<0.5	<1	<1	<1	
TP114 TP115	0-0.1	<25 <25	<50 73	<100 620	<100 250	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP116	0-0.1 0-0.05	<25	120	720	240	<0.2	<0.5	<1	<1	<1	
TP116	0.4-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP117 [P117 - [LAB_DUP]	0-0.1 0-0.1	<25 <25	<50 <50	<100 120	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP118	0-0.1	<25	<50	140	<100	<0.2	<0.5	<1	<1	<1	
TP119	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP120 TP120	0-0.1 0.4-0.5	<25 <25	<50 <50	130 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	H
TP121	0-0.1	37	<50	170	<100	<0.2	<0.5	<1	<1	<1	
TP122 TP123	0-0.1 0-0.1	<25 <25	<50 <50	160 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP123	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP125	0-0.1	<25	<50	100	<100	<0.2	<0.5	<1	<1	<1	
TP125 TP125	0-0.1 0.7-0.8	<25 <25	<50 <50	150 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
BH126	0.02-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP127 TP127	0-0.1 0.3-0.4	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP127 TP128	0.3-0.4	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	<1 <1	
TP129	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP130 TP130	0-0.1 0.4-0.5	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP131	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP132	0-0.1	<25	<50	130	<100	<0.2	<0.5	<1	<1	<1	
TP133 TP134	0-0.1 0-0.1	<25 <25	<50 <50	<100 100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP135	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP135 - [LAB_DUP] TP136	0-0.1 0-0.1	<25 <25	<50 <50	<100 230	<100 240	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP136	0.4-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP137	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP138 TP139	0-0.1 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP139	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP140 TP140	0-0.1 0.4-0.5	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP141	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	H
TP142	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP142 TP143	0.4-0.5 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
P143 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP143 TP144	0.2-0.3 0-0.1	<25 <25	<50 210	<100 1100	<100 440	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP144	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1
TP145	0-0.1	<25	<50	100	<100	<0.2	<0.5	<1	<1	<1	
TP145 TP146	0.4-0.5 0-0.05	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP146	0.3-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP147	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP147 - [LAB_DUP] TP147	0-0.1 0.6-0.7	<25 <25	<50 <50	<100 160	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP148	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP149 TP149	0-0.1 0.5-0.6	<25 <25	<50 <50	160 <100	260 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	-
TP149	0.5-0.6	<25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP150	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP151 TP152	0-0.1 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	H
TP153	0-0.1	<25	<50	400	160	<0.2	<0.5	<1	<1	<1	
TP153 TP154	0.6-0.7 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	H
P154 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
BH155	0.05-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
BH155 BH155	0.2-0.5 0.5-0.8	<25 <25	<50 <50	400 <100	120 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP156	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
BH157 BH158	0.03-0.3 0.04-0.3	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
BH158	0.04-0.3	<25 <25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP159	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
P159 - [LAB_DUP] TP160	0-0.1 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
TP160	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
TP161	0-0.1	<25	<50	140	<100	<0.2	<0.5	<1	<1	<1	
BH162 BH162	0.04-0.2 1.2-1.4	<25 <25	<50 <50	220 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	H
TP163	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
SDUP101	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
SDUP102 SDUP103	0-0.1 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	H
SDUP104	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
SDUP105 SDUP106	0-0.1	<25 <25	<50 <50	<100 180	<100 <100	<0.2 <0.2	<0.5	<1 <1	<1 <1	<1 <1	
SDUP106 SDUP107	0-0.1 0-0.05	<25 71	<50 150	180 830	<100 240	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	H
SDUP108	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
SDUP109 DUP109 - [LAB DUP]	0-0.1 0-0.1	<25 <25	<50 <50	140 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
SDUP110	0-0.1	<25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	<1	1

JKEnvironments

TABLE S5 ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS
HSL-A: Residential with garden/accessible soils; children's day care centers; preschools; and primary schools

ACM FA and AF FA and A Asbestos from ACM in ACM in soil] ate Sampled reference Depth top of Soil Mass (g) Asbestos in from ACM ACM <7mm <7mm in Mass ACM (g) ab Report Sample Sample Sample Number reference Depth Mass (g) Asbestos ID in soil (AS4964) >0.1g/kg Asbestos ID in soil <0.1g/kg Mass ACM <7mm (g) Mass FA (g) soil] (%w/w %(w/w) 0.001 SAC 0.01 0.001 0.01 133165 TP101 0-0.1 715.87 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < 0.1 No visible asbestos detected 5/09/2023 TP101 0-0.1 11,360 No ACM observed < 0.01 <0.00 No ACM <7mm observed 6/09/2023 TP101 0.1-0.2 NA 10,240 No ACM observed No FA observed 10 230 No ACM observed 6/09/2023 TP102 No ACM <7mm observed No FA observed 333165 TP102 0-0.1 677.2 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected <0.01 < 0.001 6/09/2023 333165 TP103 0-0.1 616.35 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 <0.01 < 0.001 TP103 0-0.1 10,510 No ACM observed No ACM <7mm observed No FA observed 6/09/2023 TP103 0.1-0.1 10,780 No ACM observed No ACM <7mm observed No FA observed 0-0.1 0.1-0.5 No FA observe No ACM observed TP104 TP104 <0.1 <0.00 <0.01 6/09/2023 No ACM observed No FA observe 6/09/2023 TP105 0-0.1 11,340 No ACM observed No ACM <7mm observed No FA observed 333165 TP105 0-0.1 620.18 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected < 0.01 < 0.001 6/09/2023 TP105 0.1-0.4 10.820 No ACM observed No ACM <7mm observed No FA observed 0-0.1 636.54 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.01 6/09/2023 TP106 0.1-0.2 10,110 No ACM observed No ACM <7mm observed No FA observed No ACM <7mm observed 0-0.1 670.01 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected 6/09/2023 TP107 0-0.1 11,360 No ACM observed No FA observed 333165 TP107 < 0.1 No visible asbestos detected < 0.01 < 0.001 11,800 No ACM observed No ACM <7mm observed No FA observed 0-0.1 771.96 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.01 6/09/2023 0.1-0.3 0-0.1 647.93 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 6/09/2023 TP109 0-0.1 11,270 No ACM observed No ACM <7mm observed No FA observed 333165 TP109 No visible asbestos detected < 0.01 < 0.001 TP109 0.1-0.5 6/09/2023 10,340 No ACM observed No ACM <7mm observed No FA observed 567.65 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected 0-0.1 741.87 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected 6/09/2023 TP112 0-0.1 10,230 No ACM observed No ACM <7mm observed No FA observed 333165 TP112 < 0.1 No visible asbestos detected <0.01 < 0.00 10.520 No ACM observed 6/09/2023 TP112 0.1-0.2 No ACM <7mm observed No FA observed 7/09/2023 TP113 0-0.1 11.670 No ACM observed No ACM <7mm observed No FA observed 333165 TP113 0-0.1 896.09 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected <0.01 < 0.001 No ACM <7mm observed TP113 0.1-0.9 12,200 No ACM observed No FA observed 7/09/2023 7/09/2023 TP114 0-0.1 13,330 No ACM observed No ACM <7mm observed No FA observed 333165 TP114 0-0.1 649.12 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected < 0.1 <0.01 < 0.00 10.060 No ACM observed 332.35 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected 7/09/2023 TP115 0-0.1 No ACM <7mm observed No FA observed 333165 <0.1 No visible asbestos detected < 0.01 < 0.001 TP115 0-0.1 TP115 TP116 11,240 No ACM observer 0-0.05 615.67 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected TP116 <0.1 7/09/2023 10,100 No ACM observed No ACM <7mm observed <0.01 < 0.00 0-0.05 No FA observed 6/09/2023 TP117 0-0.15 10,720 No ACM observed No ACM <7mm observed No FA observed 333165 TP117 0-0.1 723.37 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected <0.01 < 0.001 6/09/2023 TP118 0-0.1 11.120 No ACM observed No ACM <7mm observed No FA observe 333165 744.22 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No visible asbestos detecte 764.18 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected No FA observe <0.01 7/09/2023 TP119 0.1-0.25 11,500 No ACM observed No ACM <7mm observed No FA observed 7/09/2023 TP120 0-0.1 11,570 No ACM observed No ACM <7mm observed No FA observed 333165 TP120 0-0.1 764.18 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected <0.01 < 0.001 No ACM observer No ACM <7mm observed 715.84 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected TP121 11,280 No ACM observed <0.01 No FA observed 7/09/2023 TP121 0.1-0.2 10,560 No ACM observed No ACM <7mm observed No FA observed 333165 TP122 0-0.1 696.58 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected < 0.01 < 0.001 7/09/2023 TP122 11.830 No ACM observed No ACM <7mm observed No FA observed 0-0.1 0-0.1 0-0.1 975.25 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 8/09/2023 TP124 0.1-0.3 10,930 No ACM observed No ACM <7mm observed No FA observed 8/09/2023 TP125 0-0.1 10,100 No ACM observed No ACM <7mm observed No FA observed 333165 TP125 0-0.1 614.93 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < 0.1 No visible asbestos detected < 0.01 < 0.001 10,760 No ACM observer No FA observe <0.1 333165 BH126 0.02-0.2 1081.34 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected No visible asbestos detected < 0.01 BH126 0.02-0.2 1,940 No ACM observed No ACM <7mm observed < 0.00 13/09/2023 BH126 0.2-0.7 7,700 No ACM observed No ACM <7mm observed No FA observed 7/09/2023 TP127 0-0.15 10,250 No ACM observed No ACM <7mm observed No FA observed 333165 TP127 0-0.1 704 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < 0.1 No visible asbestos detected < 0.01 < 0.001 0-0.1 635.01 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected 0-0.1 <0.1 <0.01 <0.00 TP128 7/09/2023 TP128 0.1-0.3 11,310 No ACM observed No ACM <7mm observed No FA observed 7/09/2023 TP129 0-0.1 12,260 No ACM observed No ACM <7mm observed No FA observed 333165 TP129 0-0.1 607.03 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < 0.1 No visible asbestos detected < 0.01 < 0.001 7/09/2023 TP129 0.1-0.2 12.370 No ACM observed No ACM <7mm observed No FA observe 0-0.1 791.73 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected No ACM <7mm observed <0.1 7/09/2023 TP130 0-0.15 12,120 No ACM observed No FA observed 333165 TP130 <0.01 < 0.00 10,430 No ACM observed No visible asbestos detected 11/09/2023 TP131 0-0.1 No ACM <7mm observed No FA observed 333165 TP131 0-0.1 685.76 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < 0.1 <0.01 < 0.001 914.66 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected No visible ashestos detected 11/09/2023 TP132 0-0.1 10,810 No ACM observed No ACM <7mm observed No FA observed 333165 <0.1 <0.01 < 0.001 TP132 No ACM <7mm observe TP133 No ACM observer No FA observe 546.94 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected 11/09/2023 TP133 0.1-0.2 10,080 No ACM observed No ACM <7mm observed No FA observed No visible asbestos detected 11/09/2023 TP134 0-0.1 10,400 No ACM observed No ACM <7mm observed No FA observed 333165 TP134 0-0.1 554.32 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < 0.1 < 0.01 < 0.001 TP134 0.1-0.2 10.110 No ACM observed No ACM <7mm observe No FA observe 11/09/2023 733.34 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected No ACM <7mm observed 11/09/2023 TP136 0-0.15 10,540 No ACM observed No FA observed 333165 TP136 0-0.1 826.25 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < 0.1 No visible asbestos detected <0.01 < 0.001 11/09/2023 TP137 0-0.1 10,370 No ACM observed No ACM <7mm observed No FA observed 333165 TP137 0-0.1 700.59 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected < 0.01 < 0.001 No ACM observed No FA observe 668.4 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected 11/09/2023 0-0.1 No ACM observed No ACM <7mm observed No FA observed 11/09/2023 TP139 0-0.1 10,310 No ACM observed No ACM <7mm observed No FA observed 333165 TP139 0-0.1 668.93 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < 0.1 No visible asbestos detected < 0.01 < 0.001 No FA observed 10.970 No ACM observed No ACM <7mm observed 11/09/2023 TP139 0.1-0.2 TP140 0-0.1 644.86 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 333165 <0.01 <0.00 11/09/2023 TP140 0.1-0.2 10,250 No ACM observed No ACM <7mm observed No FA observed 12/09/2023 TP141 0-0.1 10,960 No ACM observed No ACM <7mm observed No FA observed 333165 TP141 0-0.1 546.29 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < 0.1 No visible asbestos detected < 0.01 < 0.001 No FA observe 10,450 No ACM observed No ACM <7mm observe 0-0.1 732.78 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 TP142 <0.01 7/09/2023 0-0.1 No ACM observed No FA observed 333165 < 0.00 11,780 No ACM observed 7/09/2023 TP142 0.1-0.3 No ACM <7mm observed No FA observed 0-0.1 514.9 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected 11/09/2023 TP143 0-0.1 10.260 No ACM observed No ACM <7mm observed No FA observed 333165 TP143 < 0.1 No visible asbestos detected < 0.01 < 0.001 TP143 0.1-0.3 0.2-0.3 754.51 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.01 <0.00 8/09/2023 TP144 0-0.05 10,230 No ACM observed No ACM <7mm observed No FA observed 333165 TP144 0-0.1 580.86 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < 0.1 No visible asbestos detected <0.01 < 0.00 8/09/2023 TP144 0.05-0.55 12,200 No ACM observed No ACM <7mm observed No FA observed 333165 TP144 0.2-0.3 1000.43 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected <0.01 < 0.001 No ACM <7mm observed 8/09/2023 TP145 0-0.1 11.260 No ACM observed No FA observe 638.36 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.01 <0.00 TP145 No ACM <7mm observed 0.1-0.2 No FA observed 8/09/2023 11,850 No ACM observed 7/09/2023 TP146 0-0.05 10,270 No ACM observed No ACM <7mm observed No FA observed 333165 TP146 0-0.05 1040.96 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < 0.1 <0.01 < 0.001 8/09/2023 TP147 0-0.1 10,830 No ACM observed No ACM <7mm observed No FA observed 333165 TP147 0-0.1 627.24 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected <0.01 < 0.001 10,390 No ACM observed No visible asbestos detected TP147 0.6-0.7 549.41 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected 8/09/2023 TP147 0.4-0.8 12,170 No ACM observed No ACM <7mm observed No FA observed 333165 < 0.1 <0.01 < 0.001 8/09/2023 TP148 0-0.1 10,060 No ACM observed No ACM <7mm observed No FA observed 333165 TP148 0-0.1 739.81 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected < 0.01 < 0.001 8/09/2023 0.1-0.4 10.350 No ACM observed No ACM <7mm observed No FA observe 8/09/2023 TP149 0-0.1 11,210 No ACM observed No ACM <7mm observed No FA observed 333165 TP149 0-0.1 721.53 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < 0.1 No visible asbestos detected < 0.01 < 0.001 8/09/2023 TP149 0.1-0.3 11,520 No ACM observed No ACM <7mm observed No FA observed No ACM observe No ACM <7mm observe 333165 0.5-0.6 694.43 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 8/09/2023 0-0.1 11,720 No ACM observed No ACM <7mm observed No FA observed 333165 TP150 0-0.1 771.92 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected No visible asbestos detected < 0.01 < 0.00 8/09/2023 TP150 0.1-0.2 10,400 No ACM observed No ACM <7mm observed No FA observed 11,850 No ACM observed No FA observed 0-0.1 700.91 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected 8/09/2023 TP151 TP151 0-0.1 0.1-0.35 No ACM <7mm observed 333165 TP151 <0.1 <0.01 < 0.001 826.89 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected <0.1 8/09/2023 TP152 0-0.1 10,760 No ACM observed No ACM <7mm observed No FA observed 333165 12/09/2023 TP153 0-0.1 10,770 No ACM observed No ACM <7mm observed No FA observed 333165 TP153 0-0.1 739 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected < 0.01 < 0.001 10,110 No ACM observed No FA observe 0-0.1 941.02 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 TP154 No visible asbestos detected <0.01 TP154 10,670 No ACM observed No ACM <7mm observed No FA observed 333165 < 0.00 12/09/2023 TP154 0.1-0.25 10,200 No ACM observed No ACM <7mm observed No FA observed 13/09/2023 BH155 0.05-0.2 1,800 No ACM observed No ACM <7mm observed No FA observed 333165 BH155 0.05-0.2 861.6 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected < 0.01 < 0.001 BH155 0.2-0.5 No ACM observed 3,720 0.2-0.5 736.86 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.01 < 0.00 8/09/2023 TP156 0-0.1 11,280 No ACM observed No ACM <7mm observed No FA observed 333165 TP156 0-0.1 645.52 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected < 0.01 < 0.001 8/09/2023 TP156 0.1-0.15 10,290 No ACM observed No ACM <7mm observed No FA observed No ACM observed No ACM <7mm observe No FA observe 0.03-0.3 333165 0.03-0.3 963.6 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 <0.01 13/09/2023 1,450 No ACM observed No ACM <7mm observed BH158 0.04-0.3 No FA observed 333165 BH158 0.04-0.3 932.77 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 <0.01 < 0.001 10.520 No ACM observed No visible asbestos detected 11/09/2023 TP159 0-0.15 No ACM <7mm observed No FA observed 333165 TP159 0-0.1 817.12 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < 0.1 < 0.01 < 0.001 11/09/2023 TP159 0.15-0.3 10.720 No ACM observed No ACM <7mm observed No FA observed 0.3-0.5 No ACM observe No FA observe 11/09/2023 TP160 0-0.1 10,410 No ACM observed No ACM <7mm observed No FA observed 333165 TP160 0-0.1 804.28 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected <0.01 < 0.001 11/09/2023 TP161 0-0.1 10,720 No ACM observed No ACM <7mm observed No FA observed 333165 0-0.1 732.73 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 No visible asbestos detected <0.01 < 0.001 TP161 No ACM <7mm observe 10.320 No ACM observer No FA observe BH162 0.04-0.2 973.2 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected <0.1 333165 <0.01 <0.00

333165 TP163 0-0.1 759.72 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected < <0.1 No visible asbestos detected

TP163 ntration above the SAC

BH162 0.2-0.6

0-0.1

13/09/2023

8/09/2023

5,700 No ACM observed

11.300 No ACM observed

No ACM <7mm observed

No ACM <7mm observed

No FA observed

No FA observed

< 0.01 < 0.001

Use Category						ı					URBAN RESIDI	NTIAL AND PUBLI	C OPEN SPAC	E								_
			pH	CEC	Clay Content	Arsenic	Chromium	AGED HEAV	Y METALS-EILs Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	ESLs Benzene	Toluene	Ethylbenzen	e Total Xylenes	5
Envirolab Services				(cmolc/kg) (% clay)	Arsenic	(Total)	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	
ent Background Conce	stration (ABC)		-	-	-	NSL	8	18	104	5	77	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	
TP101	Depth 0-0.1	Sample Description Soil Texture Fill: Silty Clay Fine	7.3	20	39	6	40	65	21	11	36	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	\perp
TP101 TP102	0.4-0.5 0-0.1	Silty Clay Fine Fill: Silty Clay Fine	7.3 7.3	20 20	39 39	6	51 34	72 58	13 20	12 10	26 36	<1 <1	NA <0.1	<25 <25	<50 <50	<100 210	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	ŀ
P102 - [LAB_DUP] TP103	0-0.1 0-0.1	Laboratory Duplicate Fine Fill: Silty Clay Fine	7.3 7.3	20	39 39	5	35 37	60 43	20	9	38 32	<1	<0.1 NA	<25 <25	<50 56	210 340	<100 160	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	H
TP104 TP105	0-0.1 0-0.1	Fill: Silty Clay Fine Fill: Silty Clay Fine	7.3	20 20	39 39	4	34 26	58 52	21 21	10 8	39	<1	<0.1 NA	<25 <25	<50 <50	140	<100 <100	<0.2	<0.5 <0.5	<1 <1	<1 <1	
TP106 TP106 TP107	0-0.1 0.4-0.5 0-0.1	Fill: Silty Clay Fine Silty Clay Fine Fill: Silty Clay Fine	7.3 7.3 7.3	20 20 20	39 39 39	5	33 44 39	72 100 74	18 8 14	11 9 10	43 24 39	41 41	<0.1 NA NA	<25 <25 <25	<50 <50 <50	<100 <100 <100	<100 <100 <100	<0.2 <0.2 <0.2	<0.5 <0.5 <0.5	<1 <1 <1	<1 <1	
TP108 TP108	0-0.1 0.4-0.5	Fill: Silty Clay Fine Silty Clay Fine	7.3 7.3	20 20	39 39	11 8	46 46	81 100	21	11 10	49	<1 <1	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	
TP109 TP110	0-0.1 0-0.1	Fill: Silty Clay Fine Silty Clay Fine	7.3 7.3	20 20	39 39	8 10	57 59	140 190	10 10	13 12	30 30	<1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	ŀ
P110 - [LAB_DUP] TP111	0-0.1 0-0.1	Laboratory Duplicate Fine Fill: Silty Clay Fine	7.3 7.3	20 20	39 39	9 5	64 25	200 100	8 12	12 7	30 33	<1	<0.1 NA	<25 <25	<50 <50 <50	<100 230	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	H
TP112 TP113	0-0.1 0-0.1	Fill: Silty Clay Fine Fill: Silty Clay Fine	7.3 7.3	20 20	39 39	6 7	21 47	320 250	35 9	10 13	68 53	<1	<0.1 NA	<25 <25	<50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Ł
TP113 TP114	0.9-1.0 0-0.1	Silty Clay Fine Fill: Silty Clay Fine	7.3 7.3	20 20	39 39	7 8	29 33	340 170	21 79	11 15	280 77	<1 <1	NA <0.1	<25 <25	<50 <50	100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	H
TP115 TP116	0-0.1 0-0.05	Fill: Silty Sand Coarse Fill: Silty Sand Coarse	7.3	20	39 39	23 5	27 29	56 61	32 19	9	140 44	<1	<0.1 NA	<25 <25	73 120	620 720	250 240	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	t
TP116 TP117 117 - [LAB DUP]	0.4-0.5 0-0.1 0-0.1	Silty Clay Fine Fill: Silty Clay Fine Laboratory Duplicate Fine	7.3 7.3 7.3	20 20 20	39 39 39	5	40 36 38	110 66 67	6 16 15	10 10 11	27 38	<1 <1 <1	NA <0.1 <0.1	<25 <25 <25	<50 <50	<100 <100 120	<100 <100 <100	<0.2 <0.2 <0.2	<0.5 <0.5 <0.5	<1 <1 <1	<1 <1 <1	ļ
TP118 TP119	0-0.1 0-0.1	Fill: Silty Clay Fine Fill: Silty Clay Fine	7.3 7.3	20 20 20	39 39	5	36 44	62 43	21 14	10	39 42 37	<1	<0.1 NA <0.1	<25 <25 <25	<50 <50 <50	140 <100	<100 <100 <100	<0.2 <0.2 <0.2	<0.5 <0.5	<1 <1 <1	<1	ŧ
TP120 TP120	0.4-0.5	Fill: Silty Clay Fine Silty Clay Fine	7.3 7.3	20 20	39 39	5	37 45	54 80	44	9	36 19	<1 <1	NA NA	<25 <25	<50 <50	130 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	F
TP121 TP122	0-0.1 0-0.1	Fill: Silty Clay Fine Fill: Silty Clay Fine	7.3 7.3	20 20	39 39	5	40 40	64 86	14 18	10 9	38 42	<1	<0.1 NA	37 <25	<50 <50	170 160	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	F
TP123 TP124	0-0.1 0-0.1	Silty Clay Fine Fill: Silty Clay Fine	7.3	20 20	39 39	12 10	140 13	310 120	6 9	30 5	64 27	<1 <1 <1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1 <1	<1 <1 <1	F
124 - [LAB_DUP] 124 - [LAB_TRIP]	0-0.1 0-0.1	Laboratory Duplicate Fine Laboratory Triplicate Fine	7.3 7.3	20	39 39	12 11	26 17	180 140	12 11	6	42 33	NA.	<0.1 NA	<25 NA	<50 NA	100 NA	<100 NA	<0.2 NA	<0.5 NA	NA	NA	E
TP125 TP125	0.7-0.8	Fill: Silty Clay Fine Silty Clay Fine	7.3 7.3	20	39 39	9	31 61	210	10	11	54 22	<1	NA NA	<25 <25	<50 <50	150 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	t
BH126 TP127	0.02-0.2	Fill: Sandy Silty Clay Fine Fill: Silty Clay Fine	7.3	20 20	39 39	6	11 35	84	34	9	59 23	<1	<0.1 NA	<25 <25	<50 <50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	L
TP127 TP128 TP129	0.3-0.4 0-0.1 0-0.1	Silty Clay Fine Fill: Silty Clay Fine Fill: Silty Clay Fine	7.3 7.3 7.3	20 20 20	39 39 39	7	71 45 53	120 69 60	12 11 18	11 13 12	30 35	<1 <1 <1	NA <0.1 NA	<25 <25 <25	<50 <50 <50	<100 <100 <100	<100 <100 <100	<0.2 <0.2 <0.2	<0.5 <0.5 <0.5	<1 <1 <1	<1 <1 <1	L
TP130 TP130	0-0.1	Fill: Silty Clay Fine Fill: Silty Clay Fine Silty Clay Fine	7.3	20	39 39	9	56 110	80 160	14	15 19	31 24	<1	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	
TP131 TP131	0.0.1	Fill: Silty Clay Fine XW Andesite Fine	7.3	20	39 39	6 NA	18 NA	330 NA	470	9 NA	190 NA	<1 NA	NA NA	<25 NA	<50 NA	<100 NA	<100 NA	<0.2 NA	<0.5 NA	<1 NA	<1 NA	l
TP132 TP133	0-0.1 0-0.1	Fill: Silty Clay Fine Fill: Silty Clay Fine	7.3	20	39 39	5 <4	16 25	210 220	32 120	8	68 290	<1	<0.1 <0.1	<25 <25	<50 <50	130 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	İ
TP134 TP135	0-0.1 0-0.1	Fill: Clayey Silt Fine Fill: Silty Clay Fine	7.3	20	39 39	5 <4	22 25	160 190	44 37	8	120	<1	NA <0.1	<25 <25	<50	100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1	l
135 - [LAB DUP] TP136	0-0.1 0-0.1	Laboratory Duplicate Fine Fill: Silty Clay Fine	7.3 7.3	20 20	39 39	5 5	31 15	230 95	32 37	11 7	71 90 100	<1 <1	<0.1 NA	<25 <25	<50 <50 <50	<100 230	<100 240	<0.2 <0.2	<0.5 <0.5	<1 <1 <1	<1 <1	1
TP136 TP137	0.4-0.5 0-0.1	XW Andesite Coarse Fill: Silty Clay Fine	7.3 7.3	20	39 39	5 5	26 20	350 210	15 26	11 9	93 67	<1 <1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	+
TP138 TP139	0-0.1 0-0.1	Fill: Silty Clay Fine Fill: Silty Clay Fine	7.3 7.3	20 20	39 39	5 5	26 21	260 210	43 98	11 8	100 230	<1 <1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	Ł
TP139 TP140	0.2-0.3 0-0.1	Silty Clay Fine Fill: Silty Clay Fine	7.3 7.3	20	39 39	13	37 21 20	390 96	180 23	15 8 12	400 76 51	<1 <1 <1	NA NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5 <0.5	<1 <1 <1	<1 <1 <1	t
TP140 TP141 TP142	0.4-0.5 0-0.1 0-0.1	Silty Clay Fine Fill: Clayey Silt Fine	7.3	20	39 39	<4 -	12 31	28 54	32 27	5	46 29	<1	<0.1 NA	<25 <25 <25	<50 <50 <50	<100 <100 <100	<100 <100 <100	<0.2 <0.2 <0.2	<0.5 <0.5	<1 <1 <1	<1 <1 <1	L
TP142 TP142 TP143	0.4-0.5 0-0.1	Fill: Silty Clay Fine Silty Clay Fine Fill: Clayey Silt Fine	7.3 7.3 7.3	20 20 20	39 39 39	7	110 20	150 150	14	16	23	<1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	İ
143 - [LAB_DUP] TP143	0-0.1	Laboratory Duplicate Fine Fill: Silty Clay Fine	7.3	20	39 39	6	23 37	140	17	7	41	<1	<0.1 NA	<25 <25 <25	<50 <50	<100 <100 <100	<100 <100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	İ
TP144 TP144	0-0.1 0.2-0.3	Fill: Silty Sand Coarse Fill: Silty Clayey Sand Coarse	7.3 7.3	20	39 39	5	27	50	54	8	32	<1	NA	<25	210	1100 <100	440 <100	< 0.2	<0.5 <0.5	<1	<1	ŀ
TP145 TP145	0.0.1	Fill: Silty Gravelly Clay Fine Silty Clay Fine	7.3	20	39 39	6	10 44 81	58 94	18 12	10 13	26 20	<1 <1	NA <0.1 NA	<25 <25 <25	<50 <50 <50	100 <100	<100 <100	<0.2 <0.2 <0.2	<0.5 <0.5	<1 <1 <1	<1 <1 <1	ŀ
TP146 TP146	0-0.05 0.3-0.4	Fill: Gravelly Silty Clay Fine Silty Clay Fine	7.3	20	39 39	7 8	53 21	170 500	14 4	13 10	51 25	<1 <1	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	ł
TP147 147 - [LAB_DUP]	0-0.1 0-0.1	Fill: Clayey Silt Fine Laboratory Duplicate Fine	7.3 7.3	20 20	39 39	<4 <4	19 14	15 13	13 12	4	26 25	<1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	1
TP147 TP148	0.6-0.7 0-0.1	Fill: Sandy Clay Fine Fill: Clayey Silt Fine	7.3 7.3	20 20	39 39	7 <4	28 12	130 14 25	48 8	18	170 25 57	<1 <1	NA <0.1	<25 <25	<50 <50 <50	160 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	ł
TP149 TP149	0-0.1 0.5-0.6	Fill: Silty Clay Fine Fill: Silty Clay Fine	7.3 7.3	20	39 39	12	19 62	120	48 29	24	68	<1 <1	NA NA	<25 <25	<50	160 <100	260 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	t
TP149 TP150	0.7-0.8	Silty Clay Fine Fill: Silty Clay Fine	7.3	20	39 39	8	110 46 21	180 86	14	14	30 36	<1	NA <0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	t
TP151 TP152 TP153	0-0.1 0-0.1 0-0.1	Fill: Silty Clay Fine Fill: Silty Clay Fine Fill: Silty Sandy Clay Fine	7.3 7.3 7.3	20 20 20	39 39 39	14	34 29	11 57 39	15 14 20	17	19 44 34	<1 <1 <1	<0.1 NA	<25 <25 <25	<50 <50 <50	<100 <100 400	<100 <100 160	<0.2 <0.2 <0.2	<0.5 <0.5 <0.5	<1 <1 <1	<1 <1	ļ
TP153 TP154	0.6-0.7	Silty Clay Fine Fill: Gravelly Clayey Sand Coarse	7.3	20	39 39	9	120 18	160 27	11 11	16 5	23 21	<1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	İ
154 - [LAB DUP] BH155	0.01	Laboratory Duplicate Coarse Fill: Silty Sand Coarse	7.3	20	39 39	6	22 13	32 12	13	6 2	24 6	<1 <1	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	F
BH155 BH155	0.2-0.5 0.5-0.8	Fill: Silty Clay Fine Silty Clay Fine	7.3 7.3 7.3	20 20 20	39	7	62 110	140 160	77 13	19 21	110 25	<1 <1	NA NA	<25 <25	<50 <50	400 <100	120 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	F
TP156 BH157	0-0.1 0.03-0.3	Fill: Silty Clay Fine Fill: Silty Clay Fine	7.3 7.3	20 20	39 39	8 10	48 12	140 21	39 16	14	110 290	<1 <1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	H
BH158 BH158	0.04-0.3	Fill: Silty Sandy Clay Fine XW Andesite Coarse	7.3	20 20	39 39	10 6	19 15 11	230 370	26 3 13	9 10	39 33 37	<1 <1 <1	NA NA <0.1	<25 <25 <25	<50 <50 <50	<100 <100	<100 <100	<0.2 <0.2 <0.2	<0.5 <0.5	<1 <1 <1	<1 <1 <1	t
TP159 159 - [LAB DUP] TP160	0-0.1 0-0.1	Fill: Clayey Silt Fine Laboratory Duplicate Fine	7.3 7.3 7.3	20	39 39 39	<4 <4	14	19 19	14	4	35	<1	< 0.1	<25	<50	<100 <100	<100 <100	< 0.2	<0.5 <0.5	<1	<1	t
TP160 TP160 TP161	0-0.1 0.2-0.3 0-0.1	Fill: Silty Clay Fine Silty Clay Fine Fill: Silty Clay Fine	7.3 7.3 7.3	20 20 20	39 39 39	6	19 18 21	270 440 160	69 5 35	10	77 22 57	<1 <1	NA NA <0.1	<25 <25 <25	<50 <50 <50	<100 <100 140	<100 <100 <100	<0.2 <0.2 <0.2	<0.5 <0.5 <0.5	<1 <1 <1	<1 <1 <1	t
TP161 BH162 BH162	0.04-0.2 1.2-1.4	Fill: Silty Clay Fine Fill: Silty Clay Fine Silty Clay Fine	7.3 7.3 7.3	20 20 20	39 39 39	7	17 74	250 130	35 6 12	8	26 21	<1 <1 <1	<0.1 NA NA	<25 <25 <25	<50 <50 <50	220 <100	<100 <100 <100	<0.2 <0.2 <0.2	<0.5 <0.5 <0.5	<1 <1 <1	<1 <1	t
TP163 SDUP101	0-0.1 0-0.1	Fill: Silty Clay Fine Duplicate of TP112 Fine	7.3 7.3	20 20 20	39 39 39	7	61 22	66 290	13 39	14 10	21 22 71	41	<0.1 <0.1	<25 <25 <25	<50 <50	<100 <100 <100	<100 <100 <100	<0.2 <0.2 <0.2	<0.5 <0.5 <0.5	<1 <1 <1	<1 <1	ŧ
SDUP102 SDUP103	0-0.1 0-0.1	Duplicate of TP112 Fine Duplicate of TP110 Fine	7.3	20 20	39 39	5 16	21 61	120 260	7	8	34 36	<1 <1	NA <0.1	<25 <25	<50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	F
SDUP104 SDUP105	0-0.1	Duplicate of TP109 Fine Duplicate of TP107 Fine	7.3 7.3 7.3	20	39	8	63 39	140 69	5 15	14	33 41	<1	NA NA	<25 <25	<50 <50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	H
SDUP106 SDUP107	0-0.1 0-0.05	Duplicate of TP102 Fine Duplicate of TP116 Coarse	7.3 7.3	20	39 39	5 6	32 33	52 80	18 21	9 10	31 49	<1 <1	NA NA	<25 71	<50 150	180 830	<100 240	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	F
SDUP108 SDUP109	0-0.1 0-0.1	Duplicate of TP145 Fine Duplicate of TP143 Fine	7.3 7.3	20 20	39 39	8 5	49 20	65 130	21 16	10 7	27 39	<1 <1	<0.1 <0.1	<25 <25	<50 <50	<100 140	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	F
P109 - [LAB DUP] SDUP110	0-0.1 0-0.1	Laboratory Duplicate Fine Duplicate of TP138 Fine	7.3 7.3	20 20	39 39	5 7	20 40	140 460	16 67	7 16	40 150	<1 <1	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	£
lumber of Samples			111	111	111	110	110	110	111	110	110	109	46	109	109	109	109	109	109	109	109	F
ntration above the SA			7.3 VALUE	20	39	23	140	500	470	30	400	<pql< td=""><td><pql< td=""><td>71</td><td>210</td><td>1100</td><td>440</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>_</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>71</td><td>210</td><td>1100</td><td>440</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>_</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	71	210	1100	440	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>_</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>_</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>_</td></pql<></td></pql<>	<pql< td=""><td>_</td></pql<>	_

Sample Reference	Sample	Sample Description	Soil Texture	pH	CEC	Clay Content	Arsenic	Chromium	Conner	Load	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C34-C40 (F4)	Benzene	Toluene	Ethylbenzene	Total Wilsons	В
	Depth				(cmolc/kg)	(% clay)			Copper	Lead			.,	DDT							.,	,	-
TP101 TP101	0.4-0.5	Fill: Silty Clay Silty Clay	Fine	7.3	20	39 39	100	410 410	230 230	1200 1200	280 280	780 780	170 170	-	180 180	120 120	1300 1300	5600 5600	65 65	105 105	125	45 45	
TP102	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	
FP102 - [LAB_DUP]	0-0.1	Laboratory Duplicate	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	
TP103 TP104	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Clay	Fine Fine	7.3	20 20	39	100 100	410 410	230 230	1200 1200	280 280	780 780	170 170	180	180 180	120 120	1300 1300	5600 5600	65 65	105 105	125 125	45 45	-
TP105	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	1
TP106	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125 125	45	
TP106	0.4-0.5	Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	
TP107 TP108	0-0.1	Fill: Silty Clay Fill: Silty Clay	Fine Fine	7.3	20	39	100	410 410	230 230	1200 1200	280 280	780 780	170 170	180	180 180	120 120	1300	5600 5600	65 65	105 105	125 125	45 45	-
TP108	0.4-0.5	Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	
TP109	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	İ
TP110 [P110 - [LAB_DUP]	0-0.1	Silty Clay	Fine	7.3	20	39	100 100	410 410	230 230	1200 1200	280	780 780	170 170	180 180	180 180	120 120	1300 1300	5600 5600	65	105 105	125 125	45	
TP111	0-0.1	Laboratory Duplicate Fill: Silty Clay	Fine Fine	7.3	20	39	100	410	230	1200	280 280	780	170	180	180	120	1300	5600	65	105	125	45	-
TP112	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	
TP113	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	İ
TP113 TP114	0.9-1.0	Silty Clay	Fine	7.3	20	39	100	410 410	230	1200	280 280	780 780	170 170	180	180	120 120	1300	5600 5600	65 65	105 105	125	45 45	
TP114	0-0.1	Fill: Silty Clay Fill: Silty Sand	Fine Coarse	7.3	20 20	39	100	410	230 230	1200	280	780	170	180	180 180	120	300	2800	50	85	125 70	105	-
TP116	0-0.05	Fill: Silty Sand	Coarse	7.3	20	39	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	t
TP116	0.4-0.5	Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	L
TP117	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410 410	230	1200	280	780 780	170 170	180	180	120	1300	5600 5600	65 65	105 105	125	45 45	1
P117 - [LAB_DUP] TP118	0-0.1	Laboratory Duplicate Fill: Silty Clay	Fine Fine	7.3	20 20	39	100 100	410 410	230 230	1200 1200	280 280	780 780	170 170	180	180 180	120 120	1300 1300	5600 5600	65 65	105	125 125	45 45	Н
TP118	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	i -
TP120	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	-	180	120	1300	5600	65	105	125	45	L
TP120	0.4-0.5	Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	-	180	120	1300	5600	65	105	125	45	Г
TP121	0-0.1	Fill: Silty Clay Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	1
TP122 TP123	0-0.1 0-0.1	Fill: Silty Clay Silty Clay	Fine Fine	7.3	20	39	100 100	410 410	230 230	1200	280 280	780 780	170 170	-	180 180	120	1300 1300	5600 5600	65	105 105	125 125	45 45	1
TP124	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780 780	170 170	180	180	120 120	1300	5600	65	105	125	45	i
P124 - [LAB_DUP]	0-0.1	Laboratory Duplicate	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	
P124 - [LAB_TRIP]	0-0.1	Laboratory Triplicate	Fine	7.3	20	39	100	410	230	1200	280	780											
TP125 TP125	0.0.1	Fill: Silty Clay Silty Clay	Fine Fine	7.3	20	39	100	410 410	230	1200	280	780 780	170 170		180 180	120 120	1300	5600 5600	65 65	105 105	125 125	45 45	1
BH126	0.7-0.8	Fill: Sandy Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	i -
TP127	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	i -
TP127	0.3-0.4	Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	-	180	120	1300	5600	65	105	125	45	
TP128	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	1
TP129 TP130	0-0.1	Fill: Silty Clay Fill: Silty Clay	Fine Fine	7.3 7.3	20	39	100 100	410 410	230 230	1200 1200	280 280	780 780	170 170	180	180 180	120 120	1300 1300	5600 5600	65 65	105 105	125 125	45 45	Н
TP130	0.4-0.5	Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	i –
TP131	0-0.1	Silty Clay Fill: Silty Clay	Fine Fine	7.3	20 20	39 39	100	410	230	1200	280	780	170		180 180	120	1300	5600	65 65	105	125 125	45 45	
TP131	0.2-0.3	XW Andesite	Fine	7.3	20	39				1200		780	-			-				-			ļ.
TP132 TP133	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Clay	Fine Fine	7.3	20	39 39	100	410 410	230 230	1200	280 280	780 780	170 170	180 180	180 180	120 120	1300 1300	5600 5600	65 65	105 105	125 125	45 45	1
TP133	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	190	180	120	1300	5600	65	105	125	45	i -
TP135	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	i -
P135 - [LAB_DUP]	0-0.1	Laboratory Duplicate Fill: Silty Clay	Fine	7.3	20 20	39	100	410	230	1200	280	780	170	180	180 180	120	1300	5600	65	105	125 125	45	
TP136	0.0.1	Fill: Silty Clay XW Andesite	Fine Coarse	7.3	20	39	100	410 410	230 230	1200	280 280	780 780	170 170		180 180	120 120	1300	5600 2800	65 50	105 85	125 70	45 105	L
TP137	0.4-0.5	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	Н
TP138	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	İ
TP139	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	
TP139 TP140	0.2-0.3	Silty Clay Fill: Silty Clay	Fine Fine	7.3	20 20	39	100 100	410 410	230 230	1200 1200	280 280	780 780	170 170	-	180 180	120 120	1300 1300	5600 5600	65 65	105 105	125 125	45 45	1
TP140	0.4-0.5	Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	⊢
TP141	0-0.1	Fill: Clavey Silt	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	
TP142	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	
TP142	0.4-0.5	Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	Ļ
TP143 [P143 - [LAB_DUP]	0-0.1	Fill: Clayey Silt Laboratory Duplicate	Fine Fine	7.3	20 20	39	100	410	230	1200	280	780	170	180 180	180 180	120	1300	5600 5600	65	105	125 125	45 45	₽
TP143	0.2-0.3	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	100	180	120	1300	5600	65	105	125	45	
TP144	0-0.1	Fill: Silty Sand	Coarse	7.3	20	39	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	İ
TP144	0.2-0.3	Fill: Silty Clayey Sand	Coarse	7.3	20	39	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	
TP145	0-0.1	Fill: Silty Gravelly Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600 5600	65	105	125	45	1
TP145 TP146	0.4-0.5	Silty Clay Fill: Gravelly Silty Clay	Fine Fine	7.3 7.3	20 20	39	100 100	410 410	230 230	1200 1200	280 280	780 780	170 170	-	180 180	120 120	1300 1300	5600 5600	65 65	105 105	125 125	45 45	1
TP146	0.3-0.4	Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	i -
TP147	0-0.1	Fill: Clayey Silt	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	İ
P147 - [LAB_DUP]	0-0.1	Laboratory Duplicate	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	F
TP147	0.6-0.7	Fill: Sandy Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	100	180	120	1300	5600	65	105	125	45	1
TP148 TP149	0-0.1	Fill: Clayey Silt	Fine	7.3	20	39	100	410	230	1200	280	780 780	170 170	180	180 180	120 120	1300 1300	5600 5600	65 65	105 105	125	45 45	1
TP149	0.5-0.6	Fill: Silty Clay Fill: Silty Clay	Fine Fine	7.3 7.3	20	39	100	410 410	230 230	1200	280 280	780	170 170		180	120	1300	5600	65	105	125 125	45	i –
TP149	0.7-0.8	Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	-	180	120	1300	5600	65	105	125	45	
TP150 TP151	0-0.1 0-0.1	Fill: Silty Clay	Fine	7.3 7.3	20	39	100 100	410 410	230	1200 1200	280	780	170	180	180	120 120	1300	5600 5600	65 65	105 105	125	45 45	1
TP151 TP152	0-0.1	Fill: Silty Clay Fill: Silty Clay	Fine Fine	7.3	20	39	100	410	230	1200	280	780 780	170 170	180	180 180	120	1300	5600 5600	65	105	125 125	45	1
TP153	0-0.1	Fill: Silty Sandy Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	i –
TP153	0.6-0.7	Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	
TP154	0-0.1	Fill: Gravelly Clayey Sand	Coarse	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	300	2800	50 50	85	70	105	ļ.
P154 - [LAB_DUP] BH155	0.05-0.2	Laboratory Duplicate Fill: Silty Sand	Coarse	7.3 7.3	20	39 39	100 100	410 410	230 230	1200 1200	280 280	780 780	170 170	180	180 180	120 120	300 300	2800 2800	50 50	85 85	70	105 105	1
BH155	0.05-0.2	Fill: Silty Sand Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	-	180	120	1300	2800 5600	65	105	125	105 45	t
BH155	0.5-0.8	Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	į –
TP156	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	-	180	120	1300	5600	65	105	125	45	
BH157	0.03-0.3	Fill: Silty Clay	Fine	7.3 7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45 45	H
BH158 BH158	0.04-0.3	Fill: Silty Sandy Clay XW Andesite	Fine Coarse	7.3	20 20	39	100 100	410 410	230 230	1200 1200	280 280	780 780	170 170	-	180 180	120 120	1300	5600 2800	65 50	105 85	125	45 105	1
TP159	0.3-0.6	Fill: Clayey Silt	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	i -
P159 - [LAB_DUP]	0-0.1	Laboratory Duplicate	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	Ĺ
TP160	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	
TP160 TP161	0.2-0.3	Silty Clay Fill: Silty Clay	Fine Fine	7.3 7.3	20	39	100 100	410 410	230 230	1200 1200	280 280	780 780	170 170	180	180 180	120 120	1300 1300	5600 5600	65 65	105 105	125 125	45 45	1
TP161 BH162	0.04-0.2	Fill: Silty Clay Fill: Silty Clay	Fine	7.3	20	39 39	100	410 410	230	1200	280	780 780	170 170	180	180 180	120 120	1300	5600 5600	65	105	125	45 45	1
BH162	1.2-1.4	Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	-	180	120	1300	5600	65	105	125	45	i
TP163	0-0.1	Fill: Silty Clay	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	i –
SDUP101	0-0.1	Duplicate of TP112	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	
SDUP102	0-0.1	Duplicate of TP111	Fine	7.3 7.3	20	39	100	410	230	1200	280	780	170		180	120	1300	5600	65	105	125	45	F
SDUP103 SDUP104	0-0.1	Duplicate of TP110 Duplicate of TP109	Fine Fine	7.3	20	39 39	100 100	410 410	230 230	1200 1200	280 280	780 780	170 170	180	180 180	120 120	1300 1300	5600 5600	65 65	105 105	125 125	45 45	1
SDUP104 SDUP105	0-0.1	Duplicate of TP109 Duplicate of TP107	Fine	7.3	20	39	100	410	230	1200	280	780	170	-	180	120	1300	5600	65	105	125	45	H
SDUP105 SDUP106	0-0.1	Duplicate of TP107 Duplicate of TP102	Fine	7.3	20	39	100	410	230	1200	280	780	170	-	180	120	1300	5600	65	105	125	45	i –
SDUP107	0-0.05	Duplicate of TP116	Coarse	7.3	20	39	100	410	230	1200	280	780	170		180	120	300	2800	50	85	70	105	Ĺ
SDUP108	0-0.1	Duplicate of TP145	Fine	7.3	20	39	100	410	230	1200	280	780	170	180	180	120	1300	5600	65	105	125	45	L
SDUP109 UP109 - [LAB DUP]	0-0.1 0-0.1	Duplicate of TP143	Fine Fine	7.3 7.3	20 20	39	100	410	230 230	1200 1200	280	780	170	180 180	180 180	120	1300	5600 5600	65 65	105 105	125 125	45	1
	0-0.1	Laboratory Duplicate Duplicate of TP138	Fine	7.3	20	39	100	410 410	230	1200	280	780 780	170 170	190	180	120 120	1300	2000	60	105		45	

Copyright JK Environme

TABLE S7
SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES
All data in mg/kg unless stated otherwise

					Chromium		EAVY META	LS					AHs B/a/D	Total		PESTICIDES Total Moderately	Total	Total	C -C	C -C	TRH C -C	٠.٠	Total	Renzene		MPOUNDS	Total	ASBESTOS FIBRE
			Arsenic	Cadmium	Chromium (Total)	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	B(a)P	Total Endosulfans	Chloropyrifos	Total Moderately Harmful	Total Scheduled	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total C ₁₀ -C ₃₆	Benzene	Toluene	Ethyl benzene	Total Xylenes	ASBESTUS FIBRE
QL - Envirolab Services			4	0.4	1	1	1	1	0.1	1	1		0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.2	0.5	1	1	100
eneral Solid Waste CT1 eneral Solid Waste SCC1			100 500	20 100	NSL NSL	100 1900	NSL NSL	100 1500	50	40 1050	NSL NSL	200	0.8	60 108	7.5	250 250	50 50	50 50	650 650		NSL NSL		10,000	10 18	288 518	600 1,080	1,000 1,800	
stricted Solid Waste CT			400	80	NSL	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	50	50	2600		NSL		40,000	40	1,152	2,400	4,000	
stricted Solid Waste SC			2000	400	NSL	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	50	50	2600		NSL		40,000	72	2,073	4,320	7,200	•
Sample Reference	Sample Depth	Sample Description																										
101 101	0-0.1 0.4-0.5	Fill: Silty Clay Silty Clay	6	<0.4 <0.4	40 51	NA NA	65 72	21 13	0.2 <0.1	11 12	36 26	19 <0.05	1.8 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
102	0-0.1	Fill: Silty Clay	6	<0.4	34 35	NA NA	58	20	<0.1	10	36 38	34	2.9	<0.1	<0.1	<0.1	< 0.1	<0.1	<25	<50	110	150	260 270	<0.2	<0.5	<1	<1	Not Detected
P102 - [LAB_DUP] P103	0-0.1 0-0.1	Laboratory Duplicate Fill: Silty Clay	5	<0.4	35	NA	43	28	<0.1 <0.1	10 9	38	24	2.7	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	110 190	160 240	430	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
P104 P105	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Clay	5 4	<0.4 <0.4	34 26	NA NA	58 52	21 21	<0.1 <0.1	10 8	39 38	59 54	4.6 4.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 120	<50 120	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
2106 2106	0-0.1 0.4-0.5	Fill: Silty Clay Silty Clay	5	<0.4 <0.4	33 44	NA NA	72 100	18 8	<0.1 <0.1	11 9	43 24	5.3 <0.05	0.5 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
107	0-0.1	Fill: Silty Clay	6	<0.4	39	NA	74	14	<0.1	10	39	2.8	0.3	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	< 0.2	<0.5	<1	<1	Not Detected
108	0-0.1 0.4-0.5	Fill: Silty Clay Silty Clay	11 8	<0.4 <0.4	46 46	NA NA	81 100	21 9	0.2 <0.1	11 10	49 30	2 <0.05	0.2 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
109 110	0-0.1 0-0.1	Fill: Silty Clay Silty Clay	8 10	<0.4 <0.4	57 59	NA NA	140 190	10 10	<0.1 0.1	13 12	30 30	<0.05 <0.05	<0.05 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
110 - [LAB_DUP]	0-0.1	Laboratory Duplicate	9	<0.4	64	NA	200	8	<0.1	12	30	< 0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	< 0.2	<0.5	<1	<1	NA
111 112	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Clay	6	<0.4 <0.4	25 21	NA NA	100 320	12 35	<0.1 <0.1	7 10	33 68	3.6 1.3	0.4	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	150 <100	130 <100	280 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
113	0-0.1 0.9-1.0	Fill: Silty Clay Silty Clay	7	<0.4	47 29	NA NA	250 340	9 21	<0.1 <0.1	13 11	53 280	2.9 14	0.2	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
114 115	0-0.1 0-0.1	Fill: Silty Clay	8 23	<0.4	33	NA NA	170	79 32	<0.1	15	77 140	6	0.53	<0.1	<0.1	<0.1	<0.1	<0.1	<25 <25	<50 <50	<100 340	<100 450	<50 790	<0.2	<0.5	<1	<1	Not Detected
116	0-0.05	Fill: Silty Sand Fill: Silty Sand	5	< 0.4	29	NA	56 61	19	0.1	11 9	44	3.1	0.3	<0.1 NA	<0.1 NA	NA	NA	<0.1 NA	<25	77	450	440	967	< 0.2	< 0.5	<1 <1	<1 <1	Not Detected
116 117	0.4-0.5 0-0.1	Silty Clay Fill: Silty Clay	5	<0.4 <0.4	40 36	NA NA	110 66	6 16	<0.1 <0.1	10 10	27 38	<0.05 2.4	<0.05 0.2	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
117 - [LAB_DUP] 118	0-0.1 0-0.1	Laboratory Duplicate	5	<0.4	38	NA NA	67 62	15 21	<0.1	11	39 42	2.9	0.2	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2	<0.5	<1	<1 <1	NA Not Detected
119	0-0.1	Fill: Silty Clay Fill: Silty Clay	4	< 0.4	44	NA	43	14	<0.1	10	37	2.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	< 0.2	<0.5	<1	<1	Not Detected
120 120	0-0.1 0.4-0.5	Fill: Silty Clay Silty Clay	5	<0.4 <0.4	37 45	NA NA	54 80	44 11	0.1 <0.1	9 8	36 19	27 <0.05	2.8 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
121 122	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Clay	5	<0.4 <0.4	40 40	NA NA	64 86	14 18	<0.1 <0.1	10	38 42	3.5 3.4	0.3	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	100 <100	110 140	210 140	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected
123	0-0.1	Silty Clay	12	< 0.4	140	<1	310	6	<0.1	30	64	< 0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	< 0.2	<0.5	<1	<1	NA
124 124 - [LAB_DUP]	0-0.1 0-0.1	Fill: Silty Clay Laboratory Duplicate	10 12	<0.4 <0.4	13 26	NA NA	120 180	9 12	<0.1 <0.1	5 9	27 42	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.4 0.5	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
124 - [LAB_TRIP] 125	0-0.1 0-0.1	Laboratory Triplicate Fill: Silty Clay	11 19	<0.4 <0.4	17 31	NA NA	140 240	11 21	<0.1 <0.1	6 11	33 54	NA 2.8	NA 0.3	NA NA	NA NA	NA NA	NA NA	NA NA	NA <25	NA <50	NA <100	NA <100	NA <50	NA <0.2	NA <0.5	NA <1	NA <1	NA Not Detected
125 126	0.7-0.8	Silty Clay Fill: Sandy Silty Clay	9	<0.4	61 11	NA NA	210	10	<0.1	12	22	<0.05 <0.05	<0.05 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100 <100	<100 <100	<50 <50	<0.2	<0.5 <0.5	<1	<1 <1	NA Not Detected
127	0-0.1	Fill: Silty Clay	6	<0.4	35	NA	84	34	0.1	9	59	1.5	0.2	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
127 128	0.3-0.4 0-0.1	Silty Clay Fill: Silty Clay	7	<0.4 <0.4	71 45	NA NA	120 69	12 11	<0.1 <0.1	11 13	23 30	<0.05 0.4	<0.05 0.06	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
129	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Clay	6	<0.4 <0.4	53 56	NA NA	60 80	18 14	0.1 <0.1	12 15	35 31	2.9 3.4	0.2	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected
.30	0.4-0.5	Silty Clay	8	<0.4	110	<1	160	12	<0.1	19	24	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
131 131	0-0.1 0.2-0.3	Fill: Silty Clay XW Andesite	NA NA	<0.4 NA	18 NA	NA NA	330 NA	470 9	<0.1 NA	9 NA	190 NA	<0.05 NA	<0.05 NA	NA NA	NA NA	NA NA	NA NA	NA NA	<25 NA	<50 NA	<100 NA	<100 NA	<50 NA	<0.2 NA	<0.5 NA	<1 NA	<1 NA	Not Detected NA
132	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Clay	5 <4	<0.4	16 25	NA NA	210 220	32 120	<0.1 <0.1	8	68 290	<0.05 3.8	<0.05 0.3	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	120 <100	120 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected
134	0-0.1	Fill: Clayey Silt	5	<0.4	22	NA	160	44	<0.1	8	120	12	1.2	NA -0.4	NA	NA 10.1	NA -0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
135 135 - [LAB_DUP]	0-0.1 0-0.1	Fill: Silty Clay Laboratory Duplicate	<4 5	<0.4 <0.4	25 31	NA NA	190 230	37 32	<0.1 <0.1	11	71 90	16	0.71 1.7	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
136 136	0-0.1 0.4-0.5	Fill: Silty Clay XW Andesite	5 5	<0.4 <0.4	15 26	NA NA	95 350	37 15	<0.1 <0.1	7 11	100 93	0.4	0.08	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	110 <100	200 <100	310 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
137	0-0.1 0-0.1	Fill: Silty Clay	5	<0.4 <0.4	20 26	NA NA	210 260	26 43	<0.1 <0.1	9 11	67 100	0.4 0.2	0.08 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
139	0-0.1	Fill: Silty Clay Fill: Silty Clay	5	<0.4	21	NA	210	98	0.1	8	230	2.2	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	< 0.2	<0.5	<1	<1	Not Detected
139 140	0.2-0.3 0-0.1	Silty Clay Fill: Silty Clay	13	<0.4 <0.4	37 21	NA NA	390 96	180 23	0.2 <0.1	15 8	400 76	<0.05 0.05	<0.05 0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
140 141	0.4-0.5 0-0.1	Silty Clay Fill: Clayey Silt	5 <4	<0.4 <0.4	20 12	NA NA	480 28	6 32	<0.1 <0.1	12 5	51 46	<0.05 2	<0.05 0.2	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
142	0-0.1	Fill: Silty Clay	6	<0.4	31	NA	54	27	<0.1	7	29	19	2	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	< 0.2	< 0.5	<1	<1	Not Detected
142 143	0.4-0.5 0-0.1	Silty Clay Fill: Clayey Silt	5	<0.4 <0.4	110 20	<1 NA	150 150	14 15	<0.1 <0.1	16 7	23 40	0.07 6.1	0.07 0.56	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected
143 - [LAB_DUP] 143	0-0.1 0.2-0.3	Laboratory Duplicate Fill: Silty Clay	6 7	<0.4 <0.4	23 37	NA NA	140 320	17 11	<0.1 <0.1	7 12	41 32	6.8 0.4	0.67	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
144 144	0-0.1 0.2-0.3	Fill: Silty Sand	5 14	<0.4 <0.4	27 10	NA NA	50	54	<0.1 <0.1	8	32	0.4 <0.05	0.07 < 0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	120 <50	660 <100	770 <100	1550 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
145	0-0.1	Fill: Silty Clayey Sand Fill: Silty Gravelly Clay	6	<0.4	44	NA NA	58	18	<0.1	10	26	0.3	0.06	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	< 0.2	<0.5	<1	<1	Not Detected
145 146	0.4-0.5 0-0.05	Silty Clay Fill: Gravelly Silty Clay	6 7	<0.4 <0.4	81 53	NA NA	94 170	12 14	<0.1 <0.1	13 13	20 51	0.4 <0.05	<0.05 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
146 147	0.3-0.4 0-0.1	Silty Clay Fill: Clayey Silt	8 <4	<0.4 <0.4	21 19	NA NA	500 15	4 13	<0.1 <0.1	10 4	25 26	<0.05 2.9	<0.05 0.3	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
147 - [LAB_DUP]	0-0.1	Laboratory Duplicate	<4	<0.4	14	NA	13	12	<0.1	4	25	1.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	< 0.2	<0.5	<1	<1	NA
147 148	0.6-0.7 0-0.1	Fill: Sandy Clay Fill: Clayey Silt	7 <4	<0.4 <0.4	28 12	NA NA	130 14	48 8	<0.1 <0.1	18 3	170 25	95 <0.05	6.8 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	110 <100	<100 <100	110 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detecte Not Detecte
149 149	0-0.1 0.5-0.6	Fill: Silty Clay Fill: Silty Clay	8 12	<0.4 <0.4	19 62	NA NA	25 120	48 29	<0.1 <0.1	6 24	57 68	1 9.8	0.1 0.87	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 <100	150 <100	150 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detecte Not Detecte
149 150	0.7-0.8	Silty Clay	9	<0.4	110	<1	180	14	<0.1	22	30 36	< 0.05	<0.05	NA	NA	NA	NA	NA	<25	<50 <50	<100 <100 <100	<100 <100 <100	<50	< 0.2	< 0.5	<1	<1	NA
151	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Clay	7	<0.4 <0.4	46 21	NA NA	11	15	<0.1 <0.1	14 6	19	4.1 <0.05	0.4 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50	<100	<100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detecte Not Detecte
152 153	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Sandy Clay	14 5	<0.4 <0.4	34 29	NA NA	57 39	14 20	<0.1 <0.1	17 8	44 34	2.9 190	0.3 15	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 270	<100 210	<50 480	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detecte Not Detecte
153 154	0.6-0.7 0-0.1	Silty Clay	9	<0.4 <0.4	120 18	<1 NA	160 27	11 11	<0.1 <0.1	16 5	23 21	<0.05 15	<0.05 1.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detecte
154 - [LAB_DUP]	0-0.1	Fill: Gravelly Clayey Sand Laboratory Duplicate	6	<0.4	22	NA	32	13	<0.1	6	24	19	1.8	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	< 0.2	< 0.5	<1	<1	NA
155 155	0.05-0.2 0.2-0.5	Fill: Silty Sand Fill: Silty Clay	10 7	<0.4 <0.4	13 62	NA NA	12 140	5 77	<0.1 0.2	2 19	6 110	19 200	2.1 12	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 310	<100 170	<50 480	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detecte Not Detecte
155 156	0.5-0.8 0-0.1	Silty Clay Fill: Silty Clay	7 8	<0.4 <0.4	110 48	<1 NA	160 140	13 39	<0.1 <0.1	21 14	25 110	<0.05 9.2	<0.05 0.81	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detecte
157	0.03-0.3	Fill: Silty Clay	10	<0.4	12	NA	21	16	<0.1	8	290	4.2	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detecte
158 158	0.04-0.3 0.3-0.6	Fill: Silty Sandy Clay XW Andesite	10 6	<0.4 <0.4	19 15	NA NA	230 370	26 3	<0.1 <0.1	9 10	39 33	3.5 <0.05	0.3 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detecte NA
159 159 - [LAB_DUP]	0-0.1 0-0.1	Fill: Clayey Silt Laboratory Duplicate	<4 <4	<0.4 <0.4	11 14	NA NA	19 19	13 14	<0.1 <0.1	4	37 35	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detecte NA
160 160	0-0.1	Fill: Silty Clay	5	<0.4	19	NA NA	270 440	69	<0.1	8	77	2.8 <0.05	0.3 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50	<100 <100 <100	<100 <100	<50 <50	<0.2	<0.5 <0.5	<1	<1	Not Detecte
61	0-0.1	Silty Clay Fill: Silty Clay	7	<0.4	21	NA	160	35	<0.1	7	22 57	8.6	0.87	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50 <50	<100	150	150	< 0.2	< 0.5	<1 <1	<1 <1	Not Detecte
.62 .62	0.04-0.2 1.2-1.4	Fill: Silty Clay Silty Clay	7	<0.4 <0.4	17 74	NA NA	250 130	6 12	<0.1 <0.1	8 11	26 21	120 2.8	0.2	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	140 <100	130 <100	270 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detecte NA
63 IP101	0-0.1 0-0.1	Fill: Silty Clay	7	<0.4 <0.4	61 22	NA NA	66 290	13 39	<0.1	14	22 71	5 1.6	0.5	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2	<0.5 <0.5	<1	<1	Not Detecte
P101- [LAB_DUP]	0-0.1	Duplicate of TP112 Laboratory Duplicate	NA F	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.1	<0.1	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
JP102 JP103	0-0.1 0-0.1	Duplicate of TP111 Duplicate of TP110	5 16	<0.4 <0.4	21 61	NA NA	120 260	7	<0.1 <0.1	8 14	34 36	3.4 <0.05	0.38 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA NA
UP104 UP105	0-0.1 0-0.1	Duplicate of TP109 Duplicate of TP107	8	<0.4	63 39	NA NA	140 69	5 15	<0.1 <0.1	14 11	33 41	<0.05 2.5	<0.05 0.21	NA NA	NA NA	NA NA	NA NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA NA
JP106	0-0.1	Duplicate of TP102	5	<0.4	32	NA	52	18	<0.1	9	31	23	2.1	NA	NA	NA	NA	NA	<25	<50	<100	140	140	< 0.2	< 0.5	<1	<1	NA
UP107 UP108	0-0.05 0-0.1	Duplicate of TP116 Duplicate of TP145	6 8	<0.4 <0.4	33 49	NA NA	80 65	21 21	0.1 <0.1	10 10	49 27	3.1 0.5	0.3	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	120 <50	530 <100	490 <100	1140 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA NA
DUP109 DUP109 - [LAB DUP]	0-0.1 0-0.1	Duplicate of TP143 Laboratory Duplicate	5	<0.4 <0.4	20 20	NA NA	130 140	16 16	<0.1 <0.1	7	39 40	8.1 7.4	0.76 0.71	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	100 <100	100 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA NA
UP110 F101	0-0.1	Duplicate of TP138	7 NA	<0.4 NA	40 NA	NA NA	460 NA	67 NA	0.1 NA	16 NA	150 NA	0.3 NA	0.08 NA	NA NA	NA NA	NA NA	NA NA	NA NA	<25 NA	<50 NA	<100 NA	<100 NA	<50 NA	<0.2 NA	<0.5 NA	<1 NA	<1 NA	NA Detected
	-	Fragment	IAM	IAM		14/4		· ···						1975				176	in M					13/4	144			
			110	110	110	6	110	111	110	110	110	109	109	46	47	47	47	44	109	109	109	109	109	109	109	109	109	67

Concentration above the CT1 Concentration above SCC1 Concentration above the SCC2 Concentration above PQL VALUE VALUE Bold

TABLE S8 SOIL LABORATORY TCLP RESULTS All data in mg/L unless stated otherwise

			Arsenic	Cadmium	Chromium	Lead	Mercury	Nickel	B(a)P
PQL - Envirolab Sen	vices		0.05	0.01	0.01	0.03	0.0005	0.02	0.001
TCLP1 - General Sol	id Waste		5	1	5	5	0.2	2	0.04
TCLP2 - Restricted S	olid Waste		20	4	20	20	0.8	8	0.16
TCLP3 - Hazardous '	Waste		>20	>4	>20	>20	>0.8	>8	>0.16
Sample Reference	Sample Depth	Sample Description							
TP101	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP102	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP103	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP104	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP105	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP113	0.9-1.0	Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP118	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP120	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP131	0-0.1	Fill: Silty Clay	NA	NA	NA	0.2	NA	NA	NA
TP133	0-0.1	Fill: Silty Clay	NA	NA	NA	0.04	NA	NA	NA
TP134	0-0.1	F: Clayey Silt	NA	NA	NA	NA	NA	NA	<0.001
TP139	0-0.1	Fill: Silty Clay	NA	NA	NA	<0.03	NA	NA	NA
TP142	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP142 - [LAB_DUP]	0-0.1	Laboratory Duplicate	NA	NA	NA	NA	NA	NA	<0.001
TP147	0.6-0.7	F: Sandy Clay	NA	NA	NA	NA	NA	NA	<0.001
TP149	0.5-0.6	F: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP153	0-0.1	F: Silty Sandy Clay	NA	NA	NA	NA	NA	NA	<0.001
TP154	0-0.1	F: Gravelly Clayey Sand	NA	NA	NA	NA	NA	NA	<0.001
BH155	0.05-0.2	F: Silty Sand	NA	NA	NA	NA	NA	NA	<0.001
BH155	0.2-0.5	F: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP156	0-0.1	F: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP161	0-0.1	F: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
BH162	0.04-0.2	F: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
Total Number of	samples		0	0	0	3	0	0	20
Maximum Value			NA	NA	NA	0.20	NA	NA	<pql< td=""></pql<>

General Solid Waste Restricted Solid Waste Hazardous Waste Concentration above PQL VALUE
VALUE
VALUE
Bold

TABLE Q1 SOIL QA/0	C SUMMA	RY																																																														
			TRH C6 - C10	TRH >C10-C16	TRH >C16-C34 TRH >C34-C40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-Xylene	Naphthalene Acenaphthylene	Acenaph-thene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b.j+k)fluoranthene	Renzo(a)byrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthra-cene	Benzo(g,h,i)perylene	нсв	alpha- BHC	gamma-BHC	beta- BHC	Heptachlor	delta- BHC	Aldrin	Heptachlor Epoxide	Gamma- Chlordane	alpha-chlordane	Endosulfan I	pp-DDE	Dieldrin	Endrin	000-04	Endosulfan II	PDDDT	Endrin Aldenyde	Endosulian Sulphate	Azinphos-methyl (Guthic	Bromophos-ethy!	Chlorpyriphos	Chlorpyriphos-methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Malathion	Parathion	Ronnel	Total PCBS	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel Zinc	
	PQL Envi			50 50	100 10 100 10	0 0.2		1	2		0.1 O. 0.1 O.																					0.1 0.1																							0.1	0.1 0.1		0.4 0.4	1	1		0.1 0.1	1 1	
Intra laboratory duplicate	TP102 SDUP106 MEAN RPD %	0-0.1 0-0.1	<25 nc	<50 nc	210 <10 180 <10 195 no 15% no	00 <0.2 c nc	<0.5 nc	<1 nc	<2 nc	nc r	0.1 0. 0.1 0. nc 0.1	1 <0. 15 0.1	0.1 <0 25 0.0	.1 1.7 75 2.4	7 0.4 5 0.3	4 4.5 5 5.7	5 4.4	1.4	1.5 5 1.8	3.3 3 4.0	3 2. 15 2.	9 1.9 1 1.4 5 1.6 % 309	0.2 5 0.2	1.9 5 2.25	NA nc	<0.1 NA nc nc	NA nc	NA nc	NA nc	NA nc	NA nc	<0.1 NA nc nc	NA nc						NA N		NA N nc r	NA N	IA N	A NA	1 <0.1 NA NA nc	NA nc	NA nc	NA nc	NA nc	NA nc	NA nc	NA nc	NA nc	NA nc	NA nc	<0.1 NA nc nc	5 5.5		32 33		19	nc	10 36 9 31 9.5 33.5 11% 15%	.5
Intra laboratory duplicate	TP116 SDUP107 MEAN RPD %	0-0.05 0-0.05	71 41.75	150 135	720 24 830 24 775 24 14% 09	0 <0.2 0 nc	<0.5 <0.5 nc nc	<1		<1 <0	0.1 <0 0.1 <0 nc n	.1 <0.	0.1 0. c 0.1	2 0.2 25 0.2	! <0.	1 0.6	5 0.5	5 0.2	2 0.2 2 0.2 2 0.2 6 0%			3 0.2		1 0.2	NA		NA NA nc	NA NA nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA M NA M nc i	NA N NA N nc r	NA N NA N nc r		IA N IA N nc n			NA NA nc	NA NA nc nc	NA NA nc	NA NA nc	NA NA nc nc	NA NA nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA	NA NA nc	6 5.5		33 31	61 80 70.5 27%	20	0.1	9 44 10 49 9.5 46.5 11% 11%	.5
Intra laboratory duplicate	TP145 SDUP108 MEAN RPD %	0-0.1 0-0.1	<25 nc	<50 nc	100 <10 <100 <10 75 no	00 <0.2 c nc	<0.5	<1 nc	nc		0.1 <0 0.1 <0 nc n	.1 <0.	0.1 <0 c n	.1 <0.	1 <0.	1 0.2	0.2 5 0.1	2 <0. 5 nc	1 <0.	1 <0.:	2 0.0	75 nc	1 <0.:	1 <0.1	<0.1 nc		<0.1	<0.1			<0.1 <0.1 nc nc	<0.1 <0.1 nc nc		<0.1 <0.1 nc nc		<0.1 · · · · · · · · · · · · · · · · · · ·			0.1 <0.1 <0.1 nc i		0.1 <	0.1 <0 0.1 <0 nc r			1 <0.1 1 <0.1 : nc	1 <0.1	1 <0.1 1 <0.1 nc			<0.1	nc	<0.1 nc	<0.1 nc	<0.1 <0.1 nc	<0.1 nc	<0.1 <0.1 nc nc	7		46.5	61.5	19.5	nc	10 26 10 27 10 26.5 0% 4%	.5
Intra laboratory duplicate	TP143 SDUP109 MEAN RPD %	0-0.1 0-0.1	<25	<50	<100 <10 140 <10 95 no 95% no	00 <0.2	<0.5 nc	<1	<2 nc	<1 <0	0.1 <0 0.1 <0 nc n	.1 <0.	.1 <0	.1 0.6	5 0.0		1.4		5 0.6 5 0.5	5 1	0.7	66 0.4 76 0.5 66 0.4 % 229	5 <0.:	1 0.7 0.6	<0.1 nc	<0.1 <0.1 nc nc	<0.1				<0.1 <0.1 nc nc	<0.1 <0.1 nc nc							(0.1 < 0.1 < nc 1		0.1 <		0.1 <0 0.1 <0 nc n		1 <0.1 1 <0.1 : nc	1 <0.1	1 <0.1 1 <0.1 nc				<0.1 <0.1 nc nc			<0.1	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc				150 130 140 14%			7 40 7 39 7 39.5 0% 3%	
Intra laboratory duplicate	TP138 SDUP110 MEAN RPD %	0-0.1 0-0.1	<25		<100 <10 <100 <10 nc nc			<1		<1 <	0.1 <0 0.1 <0 nc n	.1 <0.		.1 <0. .1 <0. . nc		1 0.1	1 0.: 1 0.: 1 0.: 6 09	l <0.	1 <0.	1 <0	2 0.0	05 <0. 08 <0. 525 nc	1 <0.:	1 <0.1	NA nc	NA	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA Na nc i	NA N NA N nc r	NA N NA N nc r	NA N NA N nc r	IA N IA N nc n	A NA A NA c no	NA NA NA nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc		NA NA nc nc		<0.4 <0.4 nc nc	40 33		67 55 (11 100 16 150 13.5 125 37% 40%	5
Inter laboratory duplicate	TP112 SDUP101 MEAN RPD %	0-0.1 0-0.1	<25 nc	<50 nc		00 <0.2 c nc	<0.5 nc			nc r	0.1 <0 0.1 <0 nc n	c no	c n	0.1	. no		5 0.3	3 no	1 0.1	1 0.2	2 0.1 2 0.1	75 0.12	2 <0.:	0.15	nc	<0.1 <0.1 nc nc	nc	nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc		<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 · · · · · · · · · · · · · · · · · · ·	nc		nc i		nc r	0.1 <0 0.1 <0 nc r	nc n	c no	1 <0.1 1 <0.1 nc	1 <0.1	l <0.1	<0.1 <0.1 nc nc	nc	nc	<0.1 <0.1 nc nc	<0.1 nc		<0.1	<0.1 nc	<0.1 NA nc nc	6	nc		305		nc	10 68 10 71 10 69.5 0% 4%	
Inter laboratory duplicate	TP111 SDUP102 MEAN RPD %	0-0.1 0-0.1	<25	<50	230 <10 <100 <10 140 no 129% no	00 <0.2	<0.5	<1	<2		0.1 <0 0.1 <0 nc n	.1 <0.	0.1 <0	.1 0.2	! <0.	1 0.6	5 0.6	5 0.2 5 0.2	2 0.3		5 0.3	39 0.2			nc	NA NA nc nc			NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA M NA M nc i				IA N IA N nc n		NA NA NA nc		NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc		NA	NA NA nc nc	NA NA nc nc		nc	23		9.5	nc	7 33 8 34 7.5 33.5 13% 3%	.5
Inter laboratory duplicate	TP110 SDUP103 MEAN RPD %	0-0.1 0-0.1	<25 nc	<50 nc	<100 <10 <100 <10 nc nc	00 <0.2 c nc	<0.5 nc	<1	<2 <2 nc nc	<1 <0	0.1 <0 0.1 <0 nc n	.1 <0.	0.1 <0 c n	.1 <0.	1 <0.								1 <0.:	1 <0.1 1 <0.1 nc	<0.1 nc	nc	<0.1 nc	<0.1 nc	<0.1 nc	<0.1 nc	<0.1 nc	<0.1 <0.1 nc nc	<0.1 nc		<0.1 <0.1 nc nc				(0.1 < 0.1 < nc 1		0.1 <		0.1 <0 0.1 <0 nc n	.1 <0.		1 <0.1	l <0.1	nc			nc	<0.1 nc	<0.1 nc	<0.1	<0.1 nc	<0.1 NA nc nc	16 13	nc	61 60	225	3 6.5 (0.075	12 30 14 36 13 33 15% 18%	3
Inter laboratory duplicate	TP109 SDUP104 MEAN RPD %	0-0.1 0-0.1	<25 nc	<50 <50 nc nc	nc no	_			nc	<1 <	0.1 <0 0.1 <0 nc n	.1 <0.	.1 <0	.1 <0. .1 <0. : nc	1 <0. 1 <0. . no			1 <0. 1 <0. : no	1 <0. 1 <0. : no			05 <0. 05 <0. c nc	1 <0.:	1 <0.1	NA.	NA	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA M NA M nc m	NA N NA N nc r		NA N NA N nc r		A NA A NA C no		NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	nc	NA NA nc nc			60	140	5		13 30 14 33 13.5 31.5 7% 10%	
Inter laboratory duplicate	TP107 SDUP105 MEAN RPD %	0-0.1 0-0.1	<25	<50	<100 <10 <100 <10 nc nc	00 <0.2	<0.5	<1 <1 nc nc		<1 <	0.1 <0 0.1 <0 nc n	.1 <0.	0.1 <0	.1 0.2	! <0.	0.5		5 0.1	0.1	2 0.4 1 0.4 5 0.4 6 0%	4 0.2	3 0.2 21 0.2 55 0.2 % 0%	2 <0.: 2 nc	1 0.2 1 0.2 0.2 0%	NA nc	NA NA nc nc			NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA NA nc nc	NA M NA M nc i	NA N NA N nc r			IA N IA N nc n		NA NA NA nc		NA NA nc nc	NA NA nc nc	NA NA nc nc		NA NA nc nc	NA NA nc nc		NA NA nc nc	NA NA nc nc	NA NA nc nc	6 5 5.5 18%				14.5	nc	10 39 11 41 10.5 40 10% 5%)
Field Blank	TB-S101 6-8/09/202	- 23	<25	<50	<100 <10	00 <0.2	<0.5	<1	<2	<1 <	0.1 <0	.1 <0.	0.1 <0	.1 <0.	1 <0.	1 <0.	1 <0.	1 <0.	1 <0.	1 <0	2 <0.	05 <0.	1 <0.:	1 <0.1	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	NA N	NA N	NA N	IA N	A NA	NA NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4	<0.4	3	1	2	<0.1	<1 1	
Field Blank	TB-S102 11-13/09/2		<25	<50	<100 <10	00 <0.2	<0.5	<1	<2	<1 <	0.1 <0	.1 <0	0.1 <0	.1 <0.	1 <0.	1 <0.	1 <0.	1 <0.	1 <0.	1 <0.3	2 <0.	05 <0.	1 <0.:	1 <0.1	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	NA N	NA N	NA N	IA N	A NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4	<0.4	3	<1	3	<0.1	<1 1	4
Field Rinsate	FR-101 7/09/23	μg/L	<10	<50	<100 <10	00 <1	<1	<1	<2	<1 <	0.1 <0	.1 <0.	0.1 <0	.1 <0.	1 <0.	1 <0.	1 <0.	1 <0.	1 <0.	1 <0	2 <0	.1 <0.	1 <0.:	1 <0.1	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	NA N	NA N	NA N	IA N	A NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.05	<0.01	<0.01	0.07	<0.03 <	:0.0005	<0.02 <0.0)2
	FR-102 13/09/23		<10	<50	<100 <10	00 <1	<1	<1	<2	<1 <	0.1 <0	.1 <0.	1.1 <0	.1 <0.	1 <0.	1 <0.	1 <0.	1 <0.	1 <0.	1 <0	2 <0	.1 <0.	1 <0.:	1 <0.1	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	NA N	NA N	NA N	IA N	A NA	NA NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.05	<0.01	<0.01	0.07	<0.03 <	<0.0005	<0.02 <0.0)2
Trip	TS-S101		-	-		86%	86%	87%	86% 8	86%		-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		=	=	===]
Spike Trip	6-8/09/202 TS-S102	23		-		99%	99%	99%	99% 9	98%				-	+-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-			+	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	_	#	=	=	#
Spike	11-13/09/	2023																																																														1

Result outside of QA/QC acceptance criteria

Rinsate metals results in mg/L

Borehole and Test Pit Logs

BOREHOLE LOG

Borehole No.

1

1 / 1

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: 35822BF Method: SPIRAL AUGER R.L. Surface: ~309.2 m

Date: 4/5/23 **Datum:** AHD

Plant Type: HANJIN DB8 Logged/Checked By: C.S.Y./O.F.

Р	lant T	ype	: HANJII	N DE	38		Log	gged/Checked By: C.S.Y./O.F	- .			
Groundwater Record	SAMPL SAMPL OGD	ES SQ	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION			N > 17 I1,17/ 150mm	309 -	-		CL	Silty CLAY: low plasticity, red brown, trace of fine to medium grained quartz and igneous gravel, and root fibres.	w>PL w <pl< td=""><td>Hd</td><td>>600 >600</td><td>GRASS COVER </td></pl<>	Hd	>600 >600	GRASS COVER
9.01.0 2018-03-20			REFUSAL	308	1-	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	-	Extremely Weathered andesite: sandy silty CLAY, low plasticity, red brown, fine to medium grained sand, with fine to medium grained quartz and igneous gravel.	xw	Hd	>600	TEMORA VOLCANICS VERY LOW TO LOW 'V' BIT RESISTANCE
Lib: JK 9.02.4 2019-05-31 Prj: JK 9			N=SPT 10/ 50mm REFUSAL	307	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		ANDESITE: grey, with quartz inclusions.	DW	L-M		
atgel Lab and In Situ Tool - DGD				306 -	3-	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>						LOW TO MODERATE
MADRA GPJ <-pre>CPT				305 — -	4 - -	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>						RESISTANCE GROUNDWATER MONITORING WELL INSTALLED TO 6m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 6m TO 0.12m. 2mm SAND FILTER PACK 6m TO 0.12m.
				304	5	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>						BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER. MODERATE RESISTANCE
9,02,4 LIB.GLB Log JK AUGERHOLE- MASTER 35822BF TF				303 -	- 6 - -			END OF BOREHOLE AT 6.00 m				-
š	YRIGH	\perp										-

BOREHOLE LOG

Borehole No.

2

1 / 1

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: 35822BF Method: SPIRAL AUGER R.L. Surface: ~317.2 m

Date: 3/5/23 Datum: AHD

1	ale. 5						_			atuiii.	אווט	
LP	lant T	ype	: HANJI	N DE	38		Lo	gged/Checked By: C.S.Y./O.F				
Groundwater	SAMPL SAMPL 090	ES SQ	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION			N = 3 1,1,2	317	- - 1- - -		CL CI	FILL: Gravelly sandy clay, low plasticity, red brown, fine to coarse grained sand, fine to medium grained igneous gravel. Sandy Silty CLAY: low plasticity, brown, fine to medium grained sand, trace of fine to medium grained igneous gravel. Silty CLAY: medium plasticity, red brown, with fine to medium grained sand, trace of fine grained igneous gravel. as above, but brown.	w <pl w<pl< td=""><td>F - St (F - St)</td><td></td><td>GRAVEL AND GRASS COVER SCREEN: 12.49kg 0-0.2m, NO FCF RESIDUAL TOO FRIABLE FOR HP TESTING</td></pl<></pl 	F - St (F - St)		GRAVEL AND GRASS COVER SCREEN: 12.49kg 0-0.2m, NO FCF RESIDUAL TOO FRIABLE FOR HP TESTING
A.GPJ <-CpravingFile> 25/05/2023 13:10 10:01:00:01 Datget Lab and in Stu Tool - DGD Lib. JK 6:02.4 2019-05-31 Pg; JK 6:01:0 2018-03-30			N=SPT 12/ 50mm REFUSAL	315	2		<u> </u>	Extremely Weathered andesite: silty clayey SAND, fine to coarse grained, brown, trace of fine grained andesite gravel.	xw	(D)		TEMORA VOLCANICS
05/2023 13:10 10.01.00.01 Datgel Lab and In Situ T				314	- - - 4— -	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		ANDESITE: brown, with quartz inclusions.	DW	EL - VL		VERY LOW 'V' BIT RESISTANCE
				- - 312 –	5- - -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		as above, but trace of medium to high strength bands.		VL - L		VERY LOW RESISTANCE
JK 9.02.4 LIB. GLB. Log. JK AUGERHOLE - MASTER 38822BF TEMOR				311 -	- 6- - - -			END OF BOREHOLE AT 5.50 m				

BOREHOLE LOG

Borehole No.

3

1 / 1

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: 35822BF Method: SPIRAL AUGER R.L. Surface: ~316.3 m

Date: 4/5/23 Datum: AHD

	oate: 4			N DE				wared Cheekeed Dog C C V /O F		atum:	AHD	
	lant i	ype	: HANJ	IN DE	38		LO	gged/Checked By: C.S.Y./O.F				
Groundwater Record	SAMPL 090	ES SQ	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION				316 –	-			FILL: Silty clay, medium plasticity, brown and red brown, trace of quartz, igneous and ironstone gravel and root fibres. FILL: Sandy silty clay, low to medium	w>PL			GRASS COVER APPEARS MODERATELY
0			N = 7 2,5,2	-	-			plasticity, brown and red brown, fine to coarse grained sand, trace of quartz and igneous gravel and boulders.				COMPACTED SCREEN: 10.18kg 0-0.1m, NO FCF SCREEN:2.24kg
				315 -	1- - -		CI	Sandy Silty CLAY: medium plasticity, red brown, fine to coarse grained sand, trace of fine to coarse grained quartz and igneous gravel.	 w <pl< td=""><td>VSt - Hd</td><td></td><td>0.1-0.3m, NO FCF SCREEN: 8.96kg 0.3-1.1m, NO FCF</td></pl<>	VSt - Hd		0.1-0.3m, NO FCF SCREEN: 8.96kg 0.3-1.1m, NO FCF
			N = 31 4,15,16	-	2-		-	Extremely Weathered andesite: sandy silty CLAY, low to medium plasticity, brown, fine to coarse grained sand, with	XW	Hd	>600 >600 >600	TEMORA VOLCANICS VERY LOW 'V' BIT
				314	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		fine grained igneous and quartz gravel.				RESISTANCE
				313 -	3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						- - - - - -
				-	4-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Extremely Weathered andesite: silty	-			- LOW RESISTANCE
				312 -	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		clayey SAND, fine to coarse grained, brown, low plasticity, trace of fine to medium grained quartz and igneous gravel.				- - - -
				311 –	5-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						MODERATE RESISTANCE LOW RESISTANCE
				-	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						· - -
				310 -	-6	-		END OF BOREHOLE AT 6.00 m				-
	PYRIGH			-	-	_						- - -

BOREHOLE LOG

Borehole No.

4

1 / 2

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: 35822BF Method: SPIRAL AUGER R.L. Surface: ~318.0 m

Date: 4/5/23 TO 5/5/23 **Datum:** AHD

P	lant Type:	HANJIN		88		Lo	gged/Checked By: C.S.Y./O.F	÷.		,	
Groundwater Record	SAMPLES D D D D D D D D D D D D D D D D D D D	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
Troughest 19.11 Tourisous transport design use mind most trough to the second second transport to the second second transport to the second second transport to the second second transport to the second sec	ES PES PES PES PES PES PES PES P	N = 21 4,8,13	317	1—————————————————————————————————————	Graphic	Unified Classific	FILL: Silty clay, low to medium plasticity, brown, trace of fine grained igneous gravel, and root fibres. Sandy Silty CLAY: low to medium plasticity, brown, fine to coarse grained sand, trace of fine grained igneous and andesite gravel. Extremely Weathered andesite: gravelly clayey sand, fine to coarse grained, brown, low plasticity, fine to coarse grained igneous gravel. ANDESITE: grey. REFER TO CORED BOREHOLE LOG	Moisture A A A Condition	Strength Strength Rel Den	Hand Penetror Penetror Reading	GRASS COVER SCREEN: 10.67kg 0-0.2m, FCF1 & FCF2 TEMORA VOLCANICS MODERATE 'V' BIT RESISTANCE HIGH RESISTANCE 'V' BIT REFUSAL GROUNDWATER MONITORING WELL INSTALLED TO 6m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 6m TO 0.12m. 2mm SAND FILTER PACK 6m TO 0.12m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.
ר פוני אינה ווא מעל אינה אינה אינה מינה מינה מינה אינה אינה אינה אינה אינה אינה אינה א			313								

CORED BOREHOLE LOG

Borehole No.

4

2 / 2

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: 35822BF Core Size: NMLC R.L. Surface: ~318.0 m

Date: 4/5/23 TO 5/5/23 Inclination: VERTICAL Datum: AHD

Plant Type: HANJIN DB8 Bearing: N/A Logged/Checked By: C.S.Y./O.F.

P	lan	t Typ	e:	HANJIN	N DB8 Bearing : N	I/A			L	ogged/Checked By: C.S.Y./O.F	.
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	POINT LOAD STRENGTH INDEX I _s (50)	SPACING (mm)	DEFECT DETAILS DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness	Formation
N N	B	<u>~</u>		9	START CORING AT 1.30m	3	\ \overline{\sigma}		700	Specific General	ığ.
		-		\ \ \	Extremely Weathered andesite: gravelly silty CLAY, low to medium plasticity, brown, fine to coarse grained andesite	XW	Hd L - M			——(1.50m) Cr, 0°, 110 mm.t	
2 % 8		-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	and ironstone gravel. ANDESITE: grey and brown.	MW	M - H			(1.65m) J. 55°, P. Vr. Fe Sn (1.65m) Cr. 55°, 70 mm.t (1.73m) J. 70°, P. Vr. Fe Sn (1.76m) J. 60°, P. R. Fe Sn	
80% RETIIRN		316 -	2-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						(1.80m) J. 50°, P. Vr. Fe Sn (1.80m) J. 30°, P. Kr. Fe Sn - (1.86m) J. 60°, P. R. Fe Sn - (1.87m) J. 80°, P. S. Clay Vn - (1.87m) J. 60°, P. Vr. Fe Sn	
02-50-01		=		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Extremely Weathered andesite: gravelly	xw	Hd		,		
2010		-	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	silty CLAY, low to medium plasticity, brown, fine to coarse grained andesite and ironstone gravel.	SW	VH	- 		1 - (2.28m) J, 80°, P, Vr, Fe Sn - (2.33m) J, 80°, P, R, Fe Sn - (2.34m) Cr, 80°, 10 mm.t - (2.38m) Cr, 80°, 20 mm.t	
50% FETIEN		315 –	3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ANDESITE: fine grained, grey, trace of light grey speckles and gas bubbles.	'				(2.45m) Cr, 80°, 90 mm.t (2.70m) Cr, 20°, 100 mm.t (2.83m) J, 70°, P, Vr, Fe Sn (3.00m) J, 50°, P, R, Fe Sn, & Clay, Vn	
2.4.24.20 3.02.4.20 3.02.4.20		-		\ \ \						- \(\bigcup \{ (3.10m) Be, 5°, Cr, S, Clay Yn \\ - \((3.16m) J, 25°, Cr, S, Clay Yn \\ - \((3.22m) Be, 5°, Cr, R, Cn \\ - \((3.33m) J, 55°, P, R, Fe Sn \\ - \((3.53m) J,	anics
		-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						(3.65m) J, 45°, St, Vr, Fe Sn (3.68m) J, 10°, Ir, Vr, Fe Sn (3.80m) Cr, 15°, 100 mm.t, associated with J at 4.38m	Temora Volcanics
old in Situ		314 -	4-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						(3.88m) J, 70°, P, S, Clay Vn (3.89m) J, 10°, P, Vr, Cn (3.95m) J, 10°, P, S, Clay Vn (4.00m) Ji, 70°, P, Vr, Fe Sn	Tem
igel Lab and		-	-	\ \ \						(4.04m) J, 50°, P, Vr, Fe Sn (4.10m) Cr, 50°, 100 mm.t (4.16m) J, 50°, P, R, Fe Sn (4.23m) Be, 10°, P, S, Clay FILLED, 2 mm.t	
20 10:00:10:10:20:20:20:20:20:20:20:20:20:20:20:20:20		-		\ \ \						☐ (4.25m) J. 60°, P. Vr. Fe Sn ☐ (4.40m) J. 70°, P. S. Clay Vn ☐ (4.47m) Be, 10°, P. S. Clay Vn ☐ (4.51m) J. 80°, P. S. Clay Vn ☐ (4.53m) J. 80°, P. S. Clay Vn	
0.10.01 8.15.15.25.00.00 0.10.01 8.15.15.00.00		313 –	5 -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						☐ (4.65m) J. 50°, P. Vr, Fe Sn	
7/CD/C7 <<0		-	-	\ \ \						(5.12m) J, 50°, P, R, Fe Sh (5.27m) J, 30°, St, Vr, Fe Sh (5.48m) J, 50°, P, R, Clay Vn	
< <drawngrii< td=""><td></td><td>-</td><td>-</td><td>\ \ \</td><td></td><td></td><td></td><td></td><td></td><td>(5.56m) Be, 80°, P, S, Clay FILLED, 5 mm.t (5.61m) J, 60°, P, Vr, Fe Sn (5.76m) Cr. 50°, 5 mm.t</td><td></td></drawngrii<>		-	-	\ \ \						(5.56m) Be, 80°, P, S, Clay FILLED, 5 mm.t (5.61m) J, 60°, P, Vr, Fe Sn (5.76m) Cr. 50°, 5 mm.t	
NOKA: 61-		-312-	6-		END OF BOREHOLE AT 6.00 m					(5.77m) CS, 50°, 5 mmt (5.85m) J, 40°, P, Vr, Fe Sn (5.93m) J, 20°, P, R, Fe Sn	
3002201		-	- - -	1						- - -	
LE - WAS IER		-	-							-	
ED 802		311 –	7 -							- - -	
Log JA COR			- -							- - -	
3.02.4 LIB. GLD LOG JN COREU BOREHOLE - MAS IER		-	-							-	
5		OUT							9889	PROFESSION OF SOME HAND HAND HAND HAND BE	

BOREHOLE LOG

Borehole No.

5

1 / 1

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: 35822BF Method: SPIRAL AUGER R.L. Surface: ~318.2 m

Date: 3/5/23 **Datum**: AHD

P	lant T	ype: I	HANJI	N DE	88		Lo	gged/Checked By: C.S.Y./O.F	=.			
Groundwater Record	SAMPL OB 020	ES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION				318 -			CL-CI	Silty CLAY: low to medium plasticity, brown, trace of fine to medium grained igneous gravel, and root fibres.	w>PL	(St)		- GRASS COVER - - RESIDUAL
Ŏ			= 12	-	1-		CI	Silty CLAY: medium plasticity, red brown, trace of fine to medium grained andesite gravel.	w~PL	Hd		- - - - -
-20				317 –	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Extremely Weathered andesite: silty clayey SAND, fine to coarse grained, brown, trace of fine grained igneous gravel.	xw	(D)		TEMORA VOLCANICS
. JK 9.01.0 2018-03-		N:	=SPT	- N -	2-			ANDESITE: brown and grey, fine to medium grained, trace of fine to medium grained quartz gravel, trace of high strength bands.	DW	L-M		LOW TO MODERATE 'V' BIT RESISTANCE -
02.4 2019-05-31 Prj:		5/	0mm FUSAL	316 -		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		ŭ				- - - -
ol - DGD Lib: JK 9.				-	3-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						- - - -
n Situ Toc				315 –		·						-
IK 9.02.4 LIB.GLB. Log. JK. AUGERHOLE - MASTER. 358228F TEMORA,GPJ. <cdrawingfile> 25/05/2023 13:11 10:01.00.01 Dargel Lab and In Slu. Tool - DGD Lib. JK 9.02.4.2019-05-31 Pg∵JK 9.01.0.2018-03-20</cdrawingfile>				314 313 312	4			END OF BOREHOLE AT 3.30 m				- 'V' BIT REFUSAL
JK 9.02.4 LIB. GLB Log JK				-		-						-

BOREHOLE LOG

Borehole No.

6

1 / 1

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: 35822BF Method: SPIRAL AUGER R.L. Surface: ~319.1 m

	ate:	2/5/	23						D	atum:	AHD	
Р	lant	Тур	e: HANJI	N DE	38		Lo	gged/Checked By: C.S.Y./O.F				
Groundwater Record	SAMF 020	PLES DS DS	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
NOI				319 –				FILL: Silty clay, low to medium plasticity, red brown, with fine to coarse grained	w>PL			- GRASS COVER
DRY ON COMPLETION			N > 14 11,14/ 100mm	-	-		CL-CI	\day quartz and igneous gravel, trace of root fibres. Sandy Silty CLAY: low to medium plasticity, brown, fine to coarse grained	w <pl< td=""><td>(VSt - Hd)</td><td></td><td>SCREEN: 10.44kg 0-0.2m, NO FCF RESIDUAL</td></pl<>	(VSt - Hd)		SCREEN: 10.44kg 0-0.2m, NO FCF RESIDUAL
			∖ ŘEFUSAL <i>ſ</i>	318 –	1-	\ \ \ \ \	-	sand, trace of fine to medium grained granite gravel. Extremely Weathered andesite: gravelly sandy SILT, low plasticity, brown and	XW	(Hd)		TEMORA VOLCANICS
					-	\		light brown, fine to coarse grained ligneous gravel.	DW	Н		HIGH 'V' BIT RESISTANCE
				317	2-			ANDESITE: grey. END OF BOREHOLE AT 1.30 m				V BIT REFUSAL GROUNDWATER MONITORING WELL INSTALLED TO 1.3m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 1.3m TO 0.12m. 2mm SAND FILTER PACK 1.3m TO 0.12m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.
				316	4							
				- 314 - - - -	5-							-
				313	6							

BOREHOLE LOG

Borehole No.

7

1 / 2

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: 35822BF Method: SPIRAL AUGER R.L. Surface: ~318.8 m

Date: 2/5/23 TO 3/5/23 **Datum:** AHD

Plant Type: HANJIN DB8 Logged/Checked By: C.S.Y./O.F.

	Plant Type: HANJIN DB8 Logged/Checked By: C.S.Y./O.F.											
Groundwater Record	ES MAS	PLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION OF AUGERING				-	-		-	ASPHALTIC CONCRETE: 20mm.t FILL: Gravelly silty sand, fine to medium grained, brown, fine to coarse grained quartz and igneous gravel.	М			- SCREEN: 1.88kg - 0.02-0.3m, NO FCF - POSSIBLY NATURAL
			N > 11 13,11/ 80mm	318 -	-	\ \ \	-	FILL: Silty sand, fine to coarse grained , red brown, trace of fine grained quartz gravel.	XW	(Hd)		_ TEMORA VOLCANICS
				-	1-	~~ ~~		Extremely Weathered andesite: gravelly sandy SILT, low plasticity, brown, fine to coarse grained sand, fine grained igneous gravel.				VERY LOW "V" BIT RESISTANCE
						\ \\\		REFER TO CORED BOREHOLE LOG				MODERATE TO HIGH RESISTANCE
				317 -	_							- NEGIOTANGE
2.00					2-	-						- -
fi - 220				-	_	_						- - -
# 70 IB-				-	-							- -
S				316 -	_							- - -
90-				-	3-	-						- - -
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				-	_							- - -
Dagga Lab and III Silu 1001 - DGU DG. AN \$102.4 £018-00-0 Fij. AN \$101.0 £016-00-20					_							- - -
				315 -	-	-						- -
0.00.10.00					4							- -
23/03/2023 13:11				-	-	-						- -
. I					_							- - -
Si di				314 -	-							-
				-	5-							- -
ENORA: GEN					_							- - -
330520					_							- -
- MAG				313 -	-	-						= - -
SEN OCE				-	6-	-						-
10 Y Y B					_							- - -
0.00					_							-
טר אינבי דום. טרם בעש אי אטספראדטבי - מאיא ובר אפעבפר				312 -	-	-						- -
·—			1	1		1			l			

CORED BOREHOLE LOG

Borehole No.

7

2 / 2

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: 35822BF Core Size: NMLC R.L. Surface: ~318.8 m

Date: 2/5/23 TO 3/5/23 Inclination: VERTICAL Datum: AHD

Plant Type: HANJIN DB8 Bearing: N/A Logged/Checked By: C.S.Y./O.F.

⊢			, ,									_
			_			CORE DESCRIPTION			POINT LOAD STRENGTH		DEFECT DETAILS	-
Water	oss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	INDEX s(50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
-	╣	ш	ш.					0,		1 1 1 1	- Specific General	+-
			-	_							_	
F	_			-		START CORING AT 1.40m				 		
			_	-		NO CORE 1.82m					-	
			317 -	2—							- - - - -	
< 9.01.0 2018-03-20	80% RETURN		316 –	-							-	
2019-05-31 Prj: JI			=	3-	> / > /	ANDESITE: fine to coarse grained, grey,	SW	VH			- - - - (3.22m) Cr, 10°, 30 mm.t	nics
GD Lib: JK 9.02.4			-	- - -	>	with quartz inclusions.	SVV	VII			— (3.33m) J, 40°, P, R, Fe Sn — (3.39m) J, 35°, P, Vr, Cn — (3.45m) Be, 15°, P, Vr, Cn — (3.45m) Be, 15°, P, Vr, Cn — (3.55m) Be, 10°, Cr, Vr, Cn — (3.65m) Be, 20°, Cr, Vr, Fe Sn — (3.70m) J, 70°, P, Vr, Fe Sn, & Gravel FILLED	Temora Volcanics
00 - DO			-315-	-		END OF BOREHOLE AT 3.80 m			1 1 1 1 1 1 1 1		(3.70m) J, 70°, P, Vr, Fe Sn, & Gravel FILLED	1 e
\$56226F TEMORA.GPJ <-ChrawingFile> 25.05/2023 13.19 10.01.00.01 Datgel Lab and In Stu Tool - DGD Lib; JK 9.02.4.2019-05-31 Pg; JK 9.01.0 2018-03-20			- - 314 — - -	4 —							- - - - - - - - - - - -	
35822BF TEMORA.GPJ < <drawingfile< td=""><td></td><td></td><td>313</td><td>6-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>- - - - - - -</td><td></td></drawingfile<>			313	6-							- - - - - - -	
JK 9.02.4 LIB.GLB Log JK CORED BOREHOLE - MASTER 3			- 312 - -	- - - 7 — - - -							- - - - - - - - -	
4 LIB.GI			211.	-							- -	
JK 9.02.	_		311 -							- 290 - 200 - 200		\perp
			OUT					-	UOT MADICED			

BOREHOLE LOG

Borehole No.

8

1 / 1

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: 35822BF Method: SPIRAL AUGER R.L. Surface: ~318.3 m

Date: 5/5/23 Datum: AHD

P	lant T	уре	: HANJII	N DE	38		Lo	gged/Checked By: C.S.Y./O.F	₹.			
Groundwater Record	SAMPI SAMPI	LES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION			N = 3 1,1,2	318 - - - - - - -	1-		- CL	ASPHALTIC CONCRETE: 20mm.t FILL: Silty sand, fine to medium grained, red brown, with fine to coarse grained igneous gravel. Sandy Silty CLAY: low plasticity, red brown, fine to coarse grained sand, trace of fine grained igneous and quartz gravel.	M w <pl< td=""><td>(Hd)</td><td>>600 >600 >600 >600</td><td>- APPEARS - POORLY COMPACTED - INSUFFICIENT RETURN FOR BULK SCREEN SAMPLE - RESIDUAL</td></pl<>	(Hd)	>600 >600 >600 >600	- APPEARS - POORLY COMPACTED - INSUFFICIENT RETURN FOR BULK SCREEN SAMPLE - RESIDUAL
Datger Lab and in Situ 1001 - Debr Lib: JN 8:142.4 Z018-055-1 PT; JN 8; ULU Z018-05-20			N = 25 5,11,14 N > 11	316 315	2-		-	Extremely Weathered andesite: sandy silty CLAY or silty clayey SAND, low plasticity, brown, fine to coarse grained sand, trace of fine grained quartz gravel.	xw	Hd		TEMORA VOLCANICS
ANGEL SOLUTION STATES TO THE STATES OF THE SOLUTION OF THE SOL			2,117 150mm REFUSAL	314 - - - - - - 313	4			Extremely Weathered andesite: gravelly silty SAND, fine to coarse grained, brown, fine to medium grained igneous gravel. ANDESITE: grey, trace of high strength	DW	VD L		- NO SPT RECOVERY - FROM AUGER
JA S.U.Z. & LIB. GLB LOG JA AUGERHOLE - MASTER 38822BF I EM	PYRIGH			312 — - - - -	6			END OF BOREHOLE AT 6.00 m				BIT RESISTANCE

BOREHOLE LOG

Borehole No.

9

1 / 1

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: 35822BF Method: SPIRAL AUGER R.L. Surface: ~308.5 m

Date: 3/5/23 **Datum**: AHD

P	lant Type:	HANJII	N DE	88		Log	gged/Checked By: C.S.Y./O.F	·.			
Groundwater Record	SAMPLES DB DB Q	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION			308 -	- - - 1—		CL-CI	Silty CLAY: low to medium plasticity, red brown, trace of quartz gravel and root fibres.	w <pl< td=""><td>(St - VSt)</td><td></td><td>- GRASS COVER - RESIDUAL - TOO FRIABLE FOR HP - TESTING</td></pl<>	(St - VSt)		- GRASS COVER - RESIDUAL - TOO FRIABLE FOR HP - TESTING
8. U. U. ZU 18-U3-ZU			307 -	- - - 2-			ANDESITE: brown. END OF BOREHOLE AT 1.20 m	DW	Н		TEMORA VOLCANICS MODERATE TO HIGH 'V' BIT RESISTANCE 'V' BIT REFUSAL
- DGD DB: JN 8.02.4 2018-05-31 PJ; JN 8.01.0 2018-05-20			306 -	-							-
10.01.00.01 Datget Lab and III old 1001 L			- 305 — -	3							
			304	4							-
E - WASTER SOCKER TEMOTALSTO			303 -	5—	-						
IN SUC.4 LIB. GLB LOG UN AUGENTULLE - MAGIEN 3802.25F I EMUNA, G-P.			302 -	6							

BOREHOLE LOG

Borehole No.

10

1 / 1

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: 35822BF Method: SPIRAL AUGER R.L. Surface: ~307.8 m

Date: 3/5/23 **Datum**: AHD

Plant Type: HANJIN DB8 Logged/Checked By: C.S.Y./O.F.

Р	lant Type:	HANJIN	1 DB	88		Lo	gged/Checked By: C.S.Y./O.F				
Groundwater Record	SAMPLES DB D B D D D D D D D D D D D D D D D D	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION		:	307 -	- - -		CL-CI	Silty CLAY: low to medium plasticity, red brown, trace of fine to medium grained quartz gravel and fine to coarse grained andesite gravel.	w>PL	(St - VSt)		- GRASS COVER - RESIDUAL - TOO FRIABLE FOR HP - TESTING
			-	1 - -			as above, but brown.				-
		:	- 306 – - -	2 -			END OF BOREHOLE AT 1.50 m				- - - - - -
		:	- 305 — -	3-							-
		:	- 304 — - -	- 4							- - - - - - -
		:	303 -	5—							- - - - - - -
		:	302 -	6-							- - - - - - -
		:	- 301 –	-							-

BOREHOLE LOG

Borehole No.

11

1 / 1

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED ALTERATIONS AND ADDITIONS

TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW Location:

Job No.: 35822BF Method: SPIRAL AUGER R.L. Surface: ~318.1 m

Datum: AHD **Date**: 3/5/23

P	lant Type:	HANJIN	DB8		Lo	gged/Checked By: C.S.Y./O.F	₹.			
Groundwater Record	SAMPLES SAMPLES SAMPLES	Field Tests	RL (m AHD)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION		31	18 -		CL-CI	Silty CLAY: low to medium plasticity, red brown, trace of fine to medium grained igneous gravel, and root fibres.	w~PL			- GRASS COVER - RESIDUAL - TOO FRIABLE FOR HP - TESTING
		31	17 -			Extremely Weathered andesite: sandy silty CLAY, low to medium plasticity, red brown, trace of fine to coarse grained igneous gravel.	xw	(Hd)		TEMORA VOLCANICS
8.02.4 ZO 18-03-01 TJJ. 3N 8.01.0 ZO 18-03-20		31	16 –	- - - -		END OF BOREHOLE AT 1.50 m				
Dargel Lab and III Situ. 1001 - DGD LIB: JN		31	15 –	;— — — —						-
0.0000		31	14 –	- - - -						-
EK 306zzbr LEMURA,GFJ < <ur< td=""><td></td><td>31</td><td>13-</td><td>- 5 - -</td><td></td><td></td><td></td><td></td><td></td><td>-</td></ur<>		31	13-	- 5 - -						-
ON S.UZ.4 LIB. GLB LOG JN AUGERHULE - MAOIEN JOSZZBT IE.		31	12 -	- 						

BOREHOLE LOG

Borehole No.

12

1 / 1

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED ALTERATIONS AND ADDITIONS

TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW Location:

Job No.: 35822BF **Method:** SPIRAL AUGER R.L. Surface: ~312.6 m

Date: 3/5/23 Datum: AHD

Plant Type: HANJIN DB8 Logged/Checked By: C.S.Y./O.F.											
Groundwater Record	SAMPLES DB DB DB DB DB DB DB DB DB DB DB DB DB D	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION		3	312 –	-		CL-CI	Silty CLAY: low to medium plasticity, red brown, with fine to coarse grained quartz gravel, trace of quartz boulder, fine grained igneous gravel, and root fibres.	w~PL			- GRASS COVER - - RESIDUAL - -
			-	1-			Sandy Silty CLAY: low to medium plasticity, brown, fine to medium grained sand, trace of fine grained igneous and ironstone gravel.	w <pl< td=""><td></td><td></td><td>- - - - - - -</td></pl<>			- - - - - - -
0.18-0.3-20		3	311 –	_			END OF BOREHOLE AT 1.50 m				-
05-31 Pg: JK 9.01.0 2018-03-20				2-							- - - -
50 LID: JN 8: UZ:4 20 18-U3-31 PJ;		3	- 310 –	-							- - - -
ab and in Situ 1661 - DGD DB.			-	3							-
.023 13:11 10:01.00:01 Datgel Lab		3	309 - - -	4-							- - - - - -
.GFJ < <drawingfile>> 25/05/2</drawingfile>		3	308 -	5—							- - - - -
MASTEK 39822BF TEMUKA.GFJ		3	- - 307 — -	-							-
JK 9.02.4 LIB.GLB LOG JK AUGERHULE - MASTEK 35822BF TE		3	306 -	6							

Log No. TP13

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: STRIP TRENCH R.L. Surface: ≈ 319.3m

Date: 4/5/23 Datum: AHD

Date	Date: 4/5/23 Datum: AHD									
Plant	t Type:	3T EXC	CAVA	TOR	Logg	ged/Checked by: A.D./T.H.				
Groundwater Record	ES ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			0			FILL:Silty clay, low to medium plasticity, brown, trace of quartz gravel and root fibres.	w≈PL			GRASS COVER SCREEN: 10.52kg 0-0.1m, NO FCF SCREEN: 10.22kg
			0.5 -		CI-CH	Silty CLAY: medium to high plasticity, red brown, trace of volcanic breccia.	w≈PL			O.1-0.3m, NO FCF RESIDUAL
			-			END OF BOREHOLE AT 1.05m				-
			1.5 -							- - - -
			2-							- - - -
			2.5 -							- - -
			3-							- - - -
			3.5							-

Log No. TP14 1/1 SDUP3: 0-0.1m

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: STRIP TRENCH R.L. Surface: ≈ 320.5m

Datum: AHD

Date: 4/5/23 Datum: AHD							
Plant Type: 3T EXCAVATO	Logged/Checked by: A.D./T.H.						
Groundwater Record Record ASS AAS SAL DB Field Tests Depth (m)	Classification NOITHINDSED NOITHINDSED	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (k-Pa.)					
DRY ON COMPLETION	FILL: Silty clay, low to medium plasticity, brown, trace of igneous and quartz gravel, volcanic breccia, metal fragments and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of quartz and volcanic breccia.	w≈PL GRASS COVER SCREEN: 12.31kg 0-0.2m, NO FCF RESIDUAL					
0.5 	- Extremely Weathered andesite: silty SAND, fine to coarse grained, brown.	XW TEMORA - VOLCANICS					
	END OF BOREHOLE AT 1.0m	-					
1.5 —		-					
2.5 —							
3-		-					
3.5		-					

Log No. TP15 1/1 SDUP2: 0-0.1m

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: STRIP TRENCH R.L. Surface: ≈ 316.7m

Date: 4/5/23 Datum: AHD

Date:	Date: 4/5/23 Datum: AHD									
Plant	Type:	3T EXC	CAVA	TOR	Logg	ged/Checked by: A.D./T.H.				
	ASS ASB ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			0 -			FILL: Silty clay, low to medium plasticity, brown, trace of quartz gravel, and root fibres.	w≈PL			GRASS COVER SCREEN: 10.29kg 0-0.1m, NO FCF SCREEN: 10.34kg 0.1-0.5m, NO FCF
			0.5 - - - - 1 -			FILL: Sandy silty clay, low to medium plasticity, red brown, trace of volcanic breccia.	w≈PL			SCREEN: 12.52kg - 0.5-1.1m, NO FCF - -
			. 1.5 -		CL-CI	Silty CLAY: low to medium plasticity, red brown, trace of quartz gravel. END OF BOREHOLE AT 1.5m	w≈PL			RESIDUAL - - -
			- - -	-		END OF BORLEHOLE AT TION				- - -
			2 - - -	-						- - -
			2.5 -	-						- - -
			3-							- - -
			3.5							-

Log No. TP16 1/1 SDUP1: 0-0.1m

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED ALTERATIONS AND ADDITIONS

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: STRIP TRENCH R.L. Surface: ≈ 316.6m

Date: 4/5/23 Datum: AHD

Plant Type: 3T EXCAVATOR Logged/Checked by: A.D./T.H.									
Groundwater Record Record Record ASS SAL ASS SAL ASS SAL ASS SARPLES SAL Classification Unified Classification OOItied Classification Anoisture Condition/ Weathering Strength/ Rel. Density	Hand Penetrometer Readings (kPa.) sylvemeab								
DRY ON COMPLETION CL-CI Silty CLAY: low to medium plasticity, brown, trace of quartz gravel, and root fibres.	GRASS COVER RESIDUAL								
CI-CH Silty CLAY: medium to high plasticity, red brown, trace of volcanic breccia. w≈PL	-								
Extremely Weathered andesite: silty XW SAND, fine to coarse grained, brown.	TEMORA - VOLCANICS								
END OF BOREHOLE AT 1.0m	-								
	-								
1.5 –	_								
	-								
	-								
	_								
	_								
2.5 –	-								
	_								
	-								
	-								
	-								

Environmental logs are not to be used for geotechnical purposes

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 306.8m

Date: 6/9/23 Datum: AHD							
Plant Type: 3T EXCAVA	TOR Log	ged/Checked by: A.D./M.D.					
Groundwater Record ES ASS ASS SAMPLES SAL DB Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON COMPLETION 1	eug CI-CH	FILL: Silty clay, medium plasticity, brown, trace of sand, igneous gravel, roots and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of quartz gravel, roots and root fibres. END OF TEST PIT AT 0.7m	w <pl td="" west<="" w⊗pl=""><td>Stre Stre Rel Rel Rel Rel Rel Rel Rel Rel Rel Re</td><td>GRASS COVER SCREEN: 11.36kg 0-0.1m, NO FCF SCREEN: 10.24kg 0.1-0.2m, NO FCF RESIDUAL</td></pl>	Stre Stre Rel Rel Rel Rel Rel Rel Rel Rel Rel Re	GRASS COVER SCREEN: 11.36kg 0-0.1m, NO FCF SCREEN: 10.24kg 0.1-0.2m, NO FCF RESIDUAL		
3.5.					-		

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 306.8m

Datum: AHD

Date: 6/9/23 Datum: AHD								
Plant Type: 3T EXCAVATOR	Logged/Checked by: A.D./M.D.							
Groundwater Record ESASAS SAMPLES ASS SAMPLES OBE Field Tests Caphic Log	Unified Classification DESCRIPTION DESCRIPTION	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)	rks					
DRY ON COMPLE-TION	FILL: Silty clay, medium to high plasticity, brown, trace of igneous and ironstone gravel, roots and root fibres.	w <pl 0-0.1m,="" 0.1-0.5m,="" 1="" co="" grass="" n<="" no="" screen:="" td=""><td>10.33kg) FCF 10.06ka</td></pl>	10.33kg) FCF 10.06ka					
0.5	CI-CH Silty CLAY: medium to high plasticity, red brown, trace of quartz gravel and andesite cobbles.	w <pl residual<="" td=""><td></td></pl>						
	END OF TEST PIT AT 1.0m	-						
1.5 —								
		_						
		-						
2.5 —		-						
		_						
3-		-						
		-						
3.5								

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 307.8m

Date: 6/9/23 Datum: AHD							
Plant Type: 3T EXCAVATOR	Logged/Checked by: A.D./M.D.						
Groundwater Record FS ASB ASS ASB SAMPLES SAL Depth (m) Graphic Log	Unified Classification DESCRIPTION NOITPICATION	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)					
DRY ON COMPLE	FILL: Silty clay, medium to high plasticity, brown, trace of sand,	w <pl cover<="" grass="" td=""></pl>					
TION 0.5	igneous gravel, roots and root fibres. CI-CH Silty CLAY: medium to high plasticity, red brown, trace of quartz and ironstone gravel, roots and root fibres.	SCREEN: 10.51kg 0-0.1m, NO FCF SCREEN: 10.78kg 0.1-0.2m, NO FCF RESIDUAL					
		-					
	END OF TEST PIT AT 0.75m	-					
1-		-					
1.5 —		-					
2-		- - - -					
2.5 —		-					
3-							
3.5		-					

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 307.8m

Date: 6/9/23 **Datum:** AHD

Date: 6/9/23	Datum: And				
Plant Type: 3T EXCAVATOR	Logged/Checked by: A.D./M.D.				
Groundwater Record ES ASS ASS SAL DB Field Tests Craphic Log	Unified Classification Moisture	Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)			
DRY ON COMPLE-TION	FILL: Silty clay, medium to high plasticity, brown, trace of igneous gravel, sand, plastic and glass fragments, and root fibres.	PL GRASS COVER SCREEN: 10.74kg			
0.5	red brown, trace of ironstone gravel and root fibres.	<pl depth="" residual<="" td=""></pl>			
	END OF TEST PIT AT 1.0m	-			
		-			
1.5 —		-			
		-			
2-		-			
		-			
2.5 –		-			
3-		-			
3.5					
3.5					

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 308.7m

	: 6/9/23							D	atum:	AHD
Plant	Type:	3T EXC	CAVA	ΓOR	Logg	ged/Checked by: A.D./M.D.				
	ASS ASB SAL OB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-		-	0 -			FILL: Silty clay, medium to high plasticity, brown, trace of igneous				GRASS COVER
TION			-			gravel, sand and root fibres.				SCREEN: 11.34kg 0-0.1m, NO FCF SCREEN: 10.82kg
				\bowtie		END OF TEST PIT AT 0.4m				0.1-0.4m, NO FCF
			0.5 —			END OF TEOTER AT 0.4m				PVC PIPE AT 0.3m DEPTH
			-							TEST PIT TERMINATED DUE TO SERVICES
			1 -							- - -
			-							-
			1.5 -							-
			-							-
			2 –							- -
			-							-
			2.5 -							-
			-							-
			3 –							-
			-							-
			3.5							-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 309.8m

	Date: 6/9/23 Datum: AHD										
	Plant	Туре	: 3T EX	CAVA	TOR	Logg	ged/Checked by: A.D./M.D.				
	Groundwater Record	ES ASS ASB SAL SAL	DB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
D	RY ON MPLE-			0			FILL: Silty clay, medium to high plasticity, brown, trace of roots and	w <pl< td=""><td></td><td></td><td>GRASS COVER</td></pl<>			GRASS COVER
	TION			0.5		CI-CH	root fibres. Silty CLAY: medium to high plasticity, red brown, trace of root fibres.	w≈PL			SCREEN: 11.20kg 0-0.1m, NO FCF SCREEN: 10.11kg 0.1-0.2m, NO FCF RESIDUAL
							END OF BOREHOLE AT 0.7m				
				1.5 - 2.5 - 3.5							
Ĺ				3.5							

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 310.9m

Date : 6	Date: 6/9/23 Datum: AHD									
Plant Ty	/pe:	3T EXC	AVAT	ΓOR	Logg	ged/Checked by: A.D./M.D.				
Ground Record ES ASS	ASB SAMPLES SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			0.5 —		CI-CH	FILL: Silty clay, medium plasticity, brown, trace of quartz gravel. Silty CLAY: medium to high plasticity, red brown, trace of andesite gravel and root fibres.	w <pl w≈PL</pl 			GRASS COVER SCREEN: 11.36kg 0-0.1m, NO FCF RESIDUAL
						END OF TEST PIT AT 0.7m				
			1.5 —			END OF TEST PIT AT 0.7m				
			3 - - - 3.5							- - - -

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 312.2m

Date: 6/9/23 Datum: AHD								
Plant Type: 3T EXCAV	ATOR Log g	ged/Checked by: A.D./M.D.						
Groundwater Record ES ASB SAMPLES SAL DB Field Tests	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLETION	CI-CH	FILL: Silty clay, medium to high plasticity, brown, trace of ironstone and andesite gravel, sand, roots and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of ironstone gravel.	w <pl w<pl< th=""><th></th><th>GRASS COVER SCREEN: 11.80kg 0-0.1m, NO FCF SCREEN: 10.50kg 0.1-0.3m, NO FCF RESIDUAL</th></pl<></pl 		GRASS COVER SCREEN: 11.80kg 0-0.1m, NO FCF SCREEN: 10.50kg 0.1-0.3m, NO FCF RESIDUAL			
1		END OF BOREHOLE AT 0.8m			-			
1.5					- - -			
					-			
2.5	-				-			
3					- - - -			
3.5	-				-			

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 313.8m

Date: 6/9/23					D	atum:	AHD
Plant Type: 3T EX	CAVATOR	Log	ged/Checked by: A.D./M.D.				
Groundwater Record ES ASB SAMPLES SAL DB Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0	× × × × × × × ×	FILL: Silty clay, medium plasticity, red brown, trace of ironstone and andesite gravel, and root fibres.	w≈PL			GRASS COVER SCREEN: 11.27kg 0-0.1m, NO FCF SCREEN: 10.34kg 0.1-0.5m, NO FCF
	0.5 1.5 – 2.5 – 3 –		END OF BOREHOLE AT 0.5m				HP GAS PIPEWORK AT 0.5m DEPTH TEST PIT TERMINATED DUE TO UNDERGROUND SERVICES
; • • • • • • • • • • • • • • • • • • •	3.5					l	

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 315.6m

Date	6/9/23	3						D	atum:	AHD
Plant	Type:	3T EXC	CAVAT	ΓOR	Logg	ged/Checked by: A.D./M.D.				
	ASS ASB SAL OB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-			0		CI	Silty CLAY: medium plasticity, red ¬ brown, trace of ironstone, quartz and	w <pl< td=""><td></td><td></td><td>GRASS COVER</td></pl<>			GRASS COVER
TION			-			andesite gravel, roots and root fibres as above.	w≈PL			RESIDUAL
			_			as above.				-
			0.5			END OF TEST PIT AT 0.5m				
			-			END OF TEST PIT AT 0.5III				_
			-							-
			-							-
			-							-
			1 -							_
			-							-
			-							-
			-							-
			1.5 —							_
			=							-
			_							
										_
			2 –							_
			-							-
			-							-
			-							-
			2.5							-
			2.5 -							_
			_							-
			-							-
			-							_
			3 –							_
			-							-
			_							
			_							-
<u> </u>			3.5							

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 317.5m

Date	6/9/23	3						D	atum:	AHD
Plant	Type:	3T EXC	CAVAT	ΓOR	Logg	ged/Checked by: A.D./M.D.				
Groundwater Record	ES ASS ASB SAL OB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION		-	0		CI	FILL: Silty clay, low to medium plasticity, brown, trace of ironstone gravel, and root fibres.	w <pl< td=""><td>υ, <u>π</u></td><td></td><td>GRASS COVER SCREEN: 10.23kg</td></pl<>	υ, <u>π</u>		GRASS COVER SCREEN: 10.23kg
			- - 0.5 —			Silty CLAY: medium plasticity, red brown, trace of sand, andesite gravel and cobbles, ironstone gravel, roots and root fibres.				\0-0.1m, NO FCF - RESIDUAL
_,			-			END OF TEST PIT AT 0.55m				-
			-							-
			-							-
			1 -							-
			-							-
			-							-
			1.5 —							_
			-							-
			-							-
			2 –							_
			-							-
			-							-
			2.5 —							_
			-							-
			-							-
			-							-
			3 –							-
			-							_
			-							-
<u> </u>			3.5							

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 319.0m

Date: 6/9/23			D	atum: A	HD
Plant Type: 3T EX	CAVATOR L	ogged/Checked by: A.D./M.D.			
Groundwater Record ES ASS SAL DB Field Tests	Depth (m) Graphic Log	DESCRIPTION DESCRIPTION	Moisture Condition/ Weathering Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	°	FILL: Silty clay, low to medium plasticity, brown, trace of sand, ironstone and igneous gravel, slag, ash and root fibres. Silty CLAY: low to medium plasticity, red brown and yellow, trace of ironstone and igneous gravel, roots and root fibres.	w <pl w<pl< td=""><td>-</td><td>LEAF LITTER COVER SCREEN: 10.23kg 0-0.1m, NO FCF SCREEN: 10.52kg 0.1-0.2m, NO FCF RESIDUAL</td></pl<></pl 	-	LEAF LITTER COVER SCREEN: 10.23kg 0-0.1m, NO FCF SCREEN: 10.52kg 0.1-0.2m, NO FCF RESIDUAL
	1.5 - 2 - 2 - 3 - 3 - 3 -	END OF TEST PIT AT 1.0m			

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 319.0m

Date: 7/9/23 **Datum:** AHD

Date	: 7/9/23	3			Datum: AHD					
Plan	t Type:	3T EXC	CAVA	ΓOR	Logg	ged/Checked by: A.D./M.D.				
Groundwater Record	ES ASS ASB SAL OR	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE TION			0			FILL: Silty clay, medium to high plasticity, brown and red brown, trace of andesite boulders and cobbles, igneous and ironstone gravel, plastic fragments, roots and root fibres.	w <pl< td=""><td></td><td></td><td>LEAF LITTER COVER SCREEN: 11.67kg 0-0.1m, NO FCF SCREEN: 12.20kg 0.1-0.9m, NO FCF</td></pl<>			LEAF LITTER COVER SCREEN: 11.67kg 0-0.1m, NO FCF SCREEN: 12.20kg 0.1-0.9m, NO FCF
			1 -		CI-CH	Silty CLAY: medium to high plasticity, red brown, trace of andesite gravel.	w <pl< td=""><td></td><td></td><td>RESIDUAL -</td></pl<>			RESIDUAL -
			- - 1.5		-	Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands.	XW			TEMORA - VOLCANICS -
			 2 2.5			END OF TEST PIT AT 1.5m				- - - - - -
			- - 3 – - - - - 3.5_							- - - - -

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 318.0m

Datum: AHD

Date : 7/9/23	Datum: AHD							
Plant Type: 3T EXCAVATOR	R Logged/Checked by: A.D./M.D.							
	Unified Classification Classification NOITHINGS	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)						
DRY ON COMPLE-TION	FILL: Silty clay, medium to high plasticity, brown, trace of sand, igneous gravel, ash and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of sand, andesite gravel, roots and root fibres.	w≈PL GRASS COVER SCREEN: 13.33kg 0-0.1m, NO FCF RESIDUAL						
0.5 -	- Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands. END OF TEST PIT AT 0.6m	XW TEMORA - VOLCANICS						
		-						
		-						
1.5 -		-						
2-								
2.5 –		-						
3-								
3.5		-						

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 314.0m

Datum: AHD

Date:	: 7/9/23	3			Datum: AHD					
Plant	Type:	3T EXC	'AVA	TOR	Logg	ged/Checked by: A.D./M.D.				
Groundwater Record	ASS ASS ASB SAL OR	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			0		СІ-СН	FILL: Silty sand, fine to medium grained, brown, trace of quartz cobbleand gravel, glass fragments and root fibres. FILL: Silty clay, medium plasticity, light brown and red brown, trace of volcanic breccia, igneous gravel, quartz cobbles and gravel, sand, roots and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of andesite and quartz gravel, roots and root fibres.	D w <pl< td=""><td></td><td></td><td>GRASS AND MULCH COVER SCREEN: 10.06kg - 0-0.1m, NO FCF SCREEN: 11.24kg 0.1-0.6m, NO FCF RESIDUAL</td></pl<>			GRASS AND MULCH COVER SCREEN: 10.06kg - 0-0.1m, NO FCF SCREEN: 11.24kg 0.1-0.6m, NO FCF RESIDUAL
			1			END OF TEST PIT AT 1.3m				 - - - - -
			2							- - - - -
			3 3 - - - 3.5							- - - -

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 312.7m

R.L. Surface: ≈ 312.7m		
Datum:	AHD	
Hand Penetrometer Readings (kPa.)	Remarks	
	GRASS COVER SCREEN: 10.10kg 0-0.05m, NO FCF RESIDUAL	
	-	
	-	

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 311.4m

Date: 6/9/23				Datum:	AHD
Plant Type: 3T EXC	CAVATOR	Logged/Checked by:	A.D./M.D.		
Groundwater Record ES ASB SAMPLES SAL DB	Depth (m) Graphic Log	Unified Classification DESCRIPT	Moistur Conditie	Strength/ Rel. Density Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE	0	FILL: Silty clay, mediu plasticity, brown, trace	m to high w <pl< td=""><td></td><td>GRASS COVER</td></pl<>		GRASS COVER
TION		CI-CH \ gravel, roots and root Silty CLAY: medium to red brown, trace of qu	fibres. / w <pl b="" high="" plasticity,<="" td=""><td></td><td>SCREEN: 10.72kg 0-0.15m, NO FCF RESIDUAL</td></pl>		SCREEN: 10.72kg 0-0.15m, NO FCF RESIDUAL
	0.5				
		END OF TEST PIT A	Γ 0.7m		
	_				-
	1 –				_
					-
	-				_
	1.5 —				_
	-				_
	_				_
					-
	2 –				_
	-				_
	-				-
	-				-
	2.5 —				-
	-				-
					-
	3 –				_
					_
	3.5				-
	J.J	<u> </u>	ı		

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 310.0m

Date : 6/9/23				Da	atum: .	AHD
Plant Type: 3T EXCA	VATOR Log	ged/Checked by: A.D./M.D.				
	Deptin (m) Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION	CL-CI	FILL: Silty clay, medium plasticity, brown, trace of quartz gravel, roots and root fibres. Silty CLAY: low to medium plasticity, red brown, trace of quartz gravel and	w <pl w≈PL</pl 			GRASS COVER SCREEN: 11.12kg 0-0.1m, NO FCF RESIDUAL
	0.5	root fibres.				- RESIDUAL - -
	-	END OF TEST PIT AT 0.7m				-
	1-					-
	-					-
	1					- -
	1.5 —					-
						-
	-					-
	2-					-
	-					-
						-
	2.5 —					_
						-
						-
	3 –					-
						-
	3.5					-
	7.V _					

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 311.0m

Date:	7/9/23	3						D	atum:	AHD
Plant	Type:	3T EXC	CAVA	ΓOR	Logg	ged/Checked by: A.D./M.D.				
Groundwater Record	ASS ASB ASB SAL SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			0 -			FILL: Silty clay, medium to high plasticity, brown, trace of sand, igneous gravel and root fibres.	w≈PL			GRASS COVER SCREEN: 12.77kg 0-0.1m, NO FCF
			0.5 -		CI-CH	Silty CLAY: medium to high plasticity, red brown, trace of sand, quartz and ironstone gravel, roots and root fibres.	w≈PL			SCREEN: 11.50kg 0.1-0.25m, NO FCF RESIDUAL
			_	V X 1		END OF TEST PIT AT 0.7m				_
			-							-
			1 -							-
			-							-
			-							_
			1.5 -							_
			-							_
			-							_
			2 -							-
			-							-
			2.5							_
			2.5 -							-
			-							-
			3-							_
			_							-
			-							-
			3.5							-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 312.2m

Date: 7/9	9/23	3						D	atum:	AHD
Plant Ty	pe:	3T EXC	CAVA	TOR	Logg	ged/Checked by: A.D./M.D.				
Groundwater Record ES ASS CAMPLES	ASB SAMPLES SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			-			FILL: Silty clay, low to medium plasticity, brown, trace of sand, igneous gravel, roots and root fibres.	w <pl< td=""><td></td><td></td><td>GRASS COVER SCREEN: 11.57kg 0-0.1m, NO FCF</td></pl<>			GRASS COVER SCREEN: 11.57kg 0-0.1m, NO FCF
			0.5 - -		CI	Silty CLAY: medium plasticity, red brown, trace of quartz gravel, roots and root fibres.	w≈PL			SCREEN: 11.82kg 0.1-0.3m, NO FCF RESIDUAL
			-			END OF BOREHOLE AT 0.8m				-
			1 - - - - - 1.5 -							
			2 - - -							- - - - -
			2.5 - - - -							- - -
			3-							- - - -
			3.5							

Environmental logs are not to be used for geotechnical purposes

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 313.4m

Date:	7/9/23	3						D	atum:	AHD
Plant	Type:	3T EXC	CAVA	ΓOR	Logg	ged/Checked by: A.D./M.D.				
	ASS ASB SAL SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			0 - - - 0.5 –		CI-CH	FILL: Silty clay, medium to high plasticity, brown, trace of ironstone gravel and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of andesite and ironstone gravel, roots and root fibres.	w <pl w<pl< td=""><td></td><td></td><td>GRASS COVER SCREEN: 11.28kg 0-0.1m, NO FCF SCREEN: 10.56kg 0.1-0.2m, NO FCF RESIDUAL</td></pl<></pl 			GRASS COVER SCREEN: 11.28kg 0-0.1m, NO FCF SCREEN: 10.56kg 0.1-0.2m, NO FCF RESIDUAL
			1			END OF TEST PIT AT 0.9m				-
			2 - - - - - 2.5							- - - - -
			3 - 3 - - - - 3.5							-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 314.9m

Date: 7/9/23 **Datum:** AHD

Date	: 7/9/23	3			Datum: AHD			AHD		
Plan	t Type:	3T EXC	CAVA	ΓOR	Logg	ged/Checked by: A.D./M.D.				
Groundwater Record	ES ASS ASB SAL OB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE TION			0 - - - 0.5 –		CI-CH	FILL: Silty clay, medium plasticity, brown, trace of quartz gravel and root-fibres. Silty CLAY: medium to high plasticity, red brown, trace of quartz cobbles and gravel, roots and root fibres.	w <pl w<pl< td=""><td></td><td></td><td>GRASS COVER SCREEN: 11.83kg 0-0.1m, NO FCF RESIDUAL</td></pl<></pl 			GRASS COVER SCREEN: 11.83kg 0-0.1m, NO FCF RESIDUAL
			1			END OF TEST PIT AT 0.7m				

Environmental logs are not to be used for geotechnical purposes

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 319.7m

Date: 7/9/23				D	atum: AHD	
Plant Type: 3T I	EXCAVATOR	Logged/Checked	by: A.D./M.D.			
Groundwater Record ES ASS ASS SAL DB		Unified	CRIPTION gription	Moisture Condition/ Weathering Strength/ Rel. Density	Hand Penetrometer Readings (kPa.) Bandara	
DRY ON COMPLE-TION	0	CI-CH Silty CLAY: med red brown, trace and root fibres.	dium to high plasticity, e of andesite gravel	w <pl< td=""><td>GRASS CO' - RESIDUAL</td><td>VER</td></pl<>	GRASS CO' - RESIDUAL	VER
		- Extremely Weat SAND, fine to c with iron indurate	oarse grained, brown,	XW	TEMORA - VOLCANICS -	6
	0.5	END OF TEST	PIT AT 0.5m		-	
	-				-	
	1 —				-	
	-				-	
	-				-	
	1.5 —				-	
	_				-	
	2-				_	
					-	
	-				-	
	2.5				-	
					-	
	3 –				_	
					-	
	3.5					

Environmental logs are not to be used for geotechnical purposes

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 320.0m

Date: 8/9/23						D	atum:	AHD
Plant Type:	3T EXCAVA	TOR	Logg	ged/Checked by: A.D./M.D.				
Groundwater Record ES ASS ASS SAMPLES SAL	Field Tests Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0			FILL: Silty clay, low to medium plasticity, brown, trace of sand, andesite gravel and cobbles, and root fibres.				SCREEN: 10.58kg 0-0.1m, NO FCF SCREEN: 10.93kg 0.1-0.3m, NO FCF
	0.5	-	-	ANDESITE: grey and brown.	DW			TEMORA - VOLCANICS
	0.5			END OF TEST PIT AT 0.5m				_
								_
	1							_
								-
	1.5							-
								-
		-						-
	2	_						-
		_						-
	2.5	-						-
		-						-
		_						-
	3	_						-
		_						-
	3.5	_						

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 317.9m

Datum: AHD

Date: 6/9/23		Datum: And
Plant Type: 3T EXCAVATOR	Logged/Checked by: A.D./M.D.	
Groundwater Record ESASAS ASS ASS ASS ASS ASS ASS ASS ASS	Unified Classification DESCRIPTION	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)
DRY ON COMPLE-TION	FILL: Silty clay, low to medium plasticity, brown, trace of sand, igneous and quartz gravel, andesite cobbles and root fibres.	w <pl 0-0.1m,="" 0.1-0.6m,="" 10.10kg="" 10.76kg="" compared="" control="" cover="" fcf="" grass="" no="" o<="" of="" screen:="" td="" the="" to="" =""></pl>
	CI-CH Silty CLAY: medium to high plasticity, red brown, trace of root fibres.	w≈PL RESIDUAL
	END OF BOREHOLE AT 1.2m	
1.5 –		-
2-		-
2.5 -		-
3-		
3.5		

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: PUSHTUBE / R.L. Surface: ≈ 315.4m

Plant Type: EZIPROBE Logged/Checked by: A.D./M.D.	atum: AHD
	(Pa.)
	(Pa.)
Groundwater Record ASS ASAB SAR DB Field Tests Classification Classification Onlified Classification Anisture Condition/ Weathering Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)
DRY ON COMPLE-TION O ASPHALT: 20mm.t W <pl and="" brown="" clay,="" coarse<="" fill:="" fine="" grey,="" low="" plasticity,="" sandy="" silty="" td="" to="" with=""><td>SCREEN: 1.94kg 0.02-0.2m, NO FCF</td></pl>	SCREEN: 1.94kg 0.02-0.2m, NO FCF
grained igneous gravel, trace of asphalt fragments. FILL: Clayey silt, fine grained, grey, trace of igneous gravel.	SCREEN: 7.70kg - 0.2-0.7m, NO FCF -
CI Silty CLAY: medium plasticity, red brown, trace of andesite gravel and root fibres.	RESIDUAL
1.5 END OF BOREHOLE AT 1.5m	_
2	

DYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method**: TEST PIT **R.L. Surface**: \approx 314.5m

Date: 7/	9/23							D	atum:	AHD
Plant Ty	pe:	3T EXC	CAVA	ΓOR	Logo	ged/Checked by: A.D./M.D.				
Groundwater Record ES ASS CAME TO	ASB SAMPLES SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			0		CI	FILL: Silty clay, low to medium plasticity, brown, trace of sand, quartz gravel, volcanic breccia and root fibres. Silty CLAY: medium plasticity, red brown, trace of sand, quartz and andesite gravel, roots and root fibres. END OF TEST PIT AT 0.8m	w≈PL			GRASS COVER SCREEN: 10.25kg 0-0.15m, NO FCF RESIDUAL
			1			LIND OF TEST FIT AT U.OIII				
			3 - 3 - - - - 3.5							- - - - -

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 313.0m

Date: 7/9/23					D	atum:	AHD
Plant Type:	3T EXCAVA	TOR Logo	ged/Checked by: A.D./M.D.				
Groundwater Record ES ASS ASS SAMPLES SAL DB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION	0		FILL: Silty clay, medium to high plasticity, brown, trace of sand, quartz gravel, roots and root fibres.	w <pl< td=""><td></td><td></td><td>GRASS COVER SCREEN: 11.92kg 0-0.1m, NO FCF</td></pl<>			GRASS COVER SCREEN: 11.92kg 0-0.1m, NO FCF
	0.5 -	CI-CH	Silty CLAY: medium to high plasticity, red brown, trace of quartz boulders, cobbles and gravel, roots and root fibres.	w≈PL			SCREEN: 11.31kg 0.1-0.3m, NO FCF RESIDUAL IRRIGATION PIPE AT 0.3m
	1 -		END OF TEST PIT AT 0.9m				_
	1.5 - 2.5 -						
	3.5						- - - - -

Environmental logs are not to be used for geotechnical purposes

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 312.0m

Date: 7/9/23		Datum: AHD			AHD
Plant Type: 3T EX	XCAVATOR	Logged/Checked by	: A.D./M.D.		
Groundwater Record ES ASS ASS SAMPLES SAL DB	Depth (m) Graphic Log	Unified Classification Classification Macada	Moistur Conditie	Strength/ Rel. Density Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0	FILL: Silty clay, low plasticity, brown, tra gravel, roots and ro CI Silty CLAY: medium brown, trace of qua gravel, roots and ro	ace of sand, quartz ot fibres. In plasticity, red rtz and andesite w≈PL		SCREEN: 12.26kg 0-0.1m, NO FCF SCREEN: 12.37kg 0.1-0.2m, NO FCF
	0.5	END OF TEST PIT	AT 0.75m		RESIDUAL
	1 -				-
	1.5 —				-
	2-				- - -
	-				-
	2.5 -				_
	3-				
	3.5				-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 314.1m

Date: 7/9/23			D	atum: Al	HD
Plant Type: 3T EXC	AVATOR Lo g	gged/Checked by: A.D./M.D.			
Groundwater Record ES ASS SAB SAL DB Field Tests	Depth (m) Graphic Log Unified	DESCRIPTION	Moisture Condition/ Weathering Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0 CI-CI	FILL: Silty clay, medium to high plasticity, brown, trace of sand, quartz and ironstone gravel, roots and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of sand, quartz and andesite gravel, roots and root fibres.	w≈PL w≈PL	-	GRASS COVER SCREEN: 12.12kg 0-0.15m, NO FCF RESIDUAL
	1 -	END OF TEST PIT AT 0.8m		-	
	2.5 -			-	
	3.5			-	

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 320.8m

Date: 11/9/23	Datum: AHD
Plant Type: 3T EXCAVATOR	Logged/Checked by: A.D./M.D.
Groundwater Record ES ASB ASB SAMPLES SAL Depth (m) Graphic Log	Unified Classification Classification Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (KPa.)
DRY ON COMPLETION 0 V V V V V V V V V V V V	FILL: Silty clay, medium to high plasticity, brown and red brown, trace of andesite and quartz gravel, and root fibres. Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands. END OF TEST PIT AT 0.7m GRASS COVER XW SCREEN: 10.43kg 0-0.1m, NO FCF TEMORA VOLCANICS
1.5 -	
2-	
2.5	
3.5	

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 320.6m

Date: 11/9/23 **Datum:** AHD

Date: 11/9/23	Datum : AHD		
Plant Type: 3T EXCAVATOR	Logged/Checked by: A.D./M.D.		
Groundwater Record ES ASS ASS SAL DB Field Tests Craphic Log	Unified Classification NOITHINDSAID	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Penetrometer Readings (kPa.)	
DRY ON COMPLET	FILL: Silty clay, medium to high plasticity, brown and red brown, trace	w <pl cover<="" grass="" th=""></pl>	
TION	of greenstone gravel and cobbles, and root fibres.	XW SCREEN: 10.81kg 0-0.1m, NO FCF	
	Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands.	- TEMORA VOLCANICS	
	END OF TEST PIT AT 0.6m		
1.5 -			
3.5			
3.5			

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 319.9m

Date: 11/9/23				U	atum:	AHD
Plant Type: 3T EXCA\	VATOR Log	gged/Checked by: A.D./M.D.				
Groundwater Record ES ASS ASS SAL DB Field Tests	Deptin (m) Graphic Log Unified	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	CI-CI CI-CI 3	FILL: Silty clay, medium to high plasticity, grey and brown, trace of igneous and quartz gravel.	w <pl td="" xw<=""><td>St. Re</td><td>He He Pe</td><td>GRASS COVER SCREEN: 10.29kg 0-0.1m, NO FCF SCREEN: 10.08kg 0.1-0.2m, NO FCF RESIDUAL TEMORA VOLCANICS</td></pl>	St. Re	He He Pe	GRASS COVER SCREEN: 10.29kg 0-0.1m, NO FCF SCREEN: 10.08kg 0.1-0.2m, NO FCF RESIDUAL TEMORA VOLCANICS
	3.5					-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 320.2m

Date	: 11/9/2	23						ט	atum:	AHD
Plan	t Type:	3T EXC	CAVA	TOR	Logg	ged/Checked by: A.D./M.D.				
Groundwater Record	ASS ASB SAL SAL DR	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE	1		0			FILL: Clayey silt, fine grained, brown, trace of root fibres.	М			GRASS COVER
TION			-		CI-CH	Silty CLAY: medium to high plasticity, red brown, trace of sand, andesite gravel and cobbles, and root fibres.	w≈PL			SCREEN: 10.40kg 0-0.1m, NO FCF SCREEN: 10.11kg 0.1-0.2m, NO FCF RESIDUAL
			0.5 -	/	-	Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands.	XW			TEMORA - VOLCANICS
			-			END OF TEST PIT AT 0.7m				-
			1-							-
			1.5 -	-						- - -
			2 - 2 -	-						-
			2.5 - -	-						-
			3-							- - -
			3.5							-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 319.1m

Date: 11/9/23				U	atum:	AHD
Plant Type: 3T EXCAVA	TOR Log	ged/Checked by: A.D./M.D.				
Groundwater Record ES ASS ASS SAMPLES SAL Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	CI-CH	FILL: Silty clay, medium to high plasticity, red brown, trace of igneous gravel and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of andesite gravel, roots and root fibres.	w <pl w<pl< td=""><td></td><td></td><td>GRASS COVER SCREEN: 10.32kg 0-0.1m, NO FCF RESIDUAL</td></pl<></pl 			GRASS COVER SCREEN: 10.32kg 0-0.1m, NO FCF RESIDUAL
0.5	-	Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands. END OF TEST PIT AT 0.6m	XW			TEMORA - VOLCANICS
	- - -					- - -
1	- - -					-
1.5	-					- - -
2	-					- - -
2.5						- - -
3						-
3.5	-					-

Environmental logs are not to be used for geotechnical purposes

Client: **HEALTH INFRASTRUCTURE**

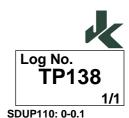
Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: \approx 319.4m

Date: 11/9/23		Datum: AHD					
Plant Type: 3T E	XCAVATOR	Logged/C	hecked by: A.D./M.D.				
Groundwater Record ES ASB SAMPLES SAL DB	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLETION	1.5 - 2.5 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	CI-CH angu asph: Silty red b - roots Extre SANI with i	Silty clay, low to medium city, brown and grey, with sublar, igneous gravel, trace of alt fragments. CLAY: medium to high plasticity, rown, trace of andesite gravel, and root fibres. mely Weathered andesite: silty D, fine to coarse grained, brown, ron indurated bands. OF BOREHOLE AT 0.7m	W <pl td="" wois<="" xw=""><td>Stree Rel.</td><td>Han Pengeral Pengeral Real Real Real Real Real Real Real Re</td><td>GRASS COVER SCREEN: 10.54kg 0-0.15m, NO FCF RESIDUAL TEMORA VOLCANICS</td></pl>	Stree Rel.	Han Pengeral Pengeral Real Real Real Real Real Real Real Re	GRASS COVER SCREEN: 10.54kg 0-0.15m, NO FCF RESIDUAL TEMORA VOLCANICS
	3.5						-

Environmental logs are not to be used for geotechnical purposes


Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 318.3m

500 Ho.: 2000221 K	motilod: 1201111	Till Garlage: ~ 010.0111
Date: 11/9/23		Datum: AHD
Plant Type: 3T EXCAVATOR	Logged/Checked by: A.D./M.D.	
Groundwater Record FS ASB ASB SAMPLES SAL Field Tests Depth (m) Graphic Log	Unified Classification NOITHINDSED	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)
DRY ON COMPLET	FILL: Silty clay, medium plasticity, brown, trace of igneous gravel, roots	w <pl cover<="" grass="" td=""></pl>
TION	and root fibres. CI-CH Silty CLAY: medium to high plasticity,	SCREEN: 10.37kg w <pl 0-0.1m,="" fcf<="" no="" td="" =""></pl>
	red brown, trace of sand, andesite gravel and root fibres. - Extremely Weathered andesite: silty	- SCREEN: 10.06kg 0.1-0.2m, NO FCF XW RESIDUAL
0.5 - V V	SAND, fine to coarse grained, with iron indurated bands.	TEMORA VOLCANICS
	END OF TEST PIT AT 0.7m	
1 -		_
		-
		-
1.5 —		-
 		
		-
2 –		-
 		-
l		[
3 -		
3.5		

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 317.3m

D 4 44/0/20	moniod. TEOTTH	D 4 ALID
Date: 11/9/23		Datum: AHD
Plant Type: 3T EXCAVATOR	Logged/Checked by: A.D./M.D.	
Groundwater Record FS ASB ASB SAMPLES SAL DB Field Tests Craphic Log	Unified Classification NOITHINDSED	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)
DRY ON ON ON ON ON ON ON ON ON ON ON ON ON	FILL: Silty clay, medium plasticity,	w <pl cover<="" grass="" th=""></pl>
COMPLE- TION 0.5 -	brown, trace of igneous gravel, roots and root fibres. Silty CLAY: medium plasticity, red brown and yellow brown, trace of andesite gravel and root fibres. Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands.	W <pl 0-0.1m,="" 10.19kg="" fcf="" no="" residual="" screen:="" temora="" th="" volcanics<=""></pl>
	END OF TEST PIT AT 0.65m	-
1.5 -		
3.5		

OPYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 317.8m

JOD NO L33022F1	•		iou. ILSI FII	Potago ALD			
Date: 11/9/23					D	atum:	AHD
Plant Type: 3T EXC	CAVATOR	Log	ged/Checked by: A.D./M.D.				
Groundwater Record ES ASS SAL DB Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLETION	1.5 – 2.5 –	CI CHass	FILL: Silty clay, medium plasticity, brown, trace of sand, quartz gravel, glass fragments and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of andesite cobbles and gravel, and root fibres. Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands. END OF TEST PIT AT 0.5m	Moisi A A A S Conc	Strer Rel. Rel.	Hance Pene	GRASS COVER SCREEN: 10.31kg 0-0.1m, NO FCF SCREEN: 10.97kg 0.1-0.2m, NO FCF RESIDUAL TEMORA VOLCANICS REFUSAL ON ANDESITE
	3-						-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 318.4m

	Dota: 44/0/02					ou. IEST FII	Datum: AHD			
Date	: 11/9/2	23						D	atum:	AHD
Plan	t Type:	3T EXC	CAVAT	ΓOR	Logg	jed/Checked by: A.D./M.D.				
Groundwater Record	ASS ASS SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE TION	ASS ASS ASS ASS ASS BASS BASS BASS BASS	Field	1.5 — 1.5 — 2.5 — 3 — 3 — 3 — 3 — 3 — 3 — 3 — 3 — 3 —	Grap	CI-CH Class	FILL: Silty clay, medium plasticity, brown, trace of sand, ironstone and igneous gravel, glass fragments and root fibres. FILL: Silty sandy clay, low to medium plasticity, red brown, yellow brown and grey, fine to medium grained sand, trace of igneous gravel and roof fibres. Silty CLAY: medium to high plasticity red brown, trace of ironstone and andesite gravel. Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands. END OF TEST PIT AT 0.7m	X	Strer Strer Rel. Rel.	Hand Hand Pene	GRASS COVER SCREEN: 10.07kg 0-0.1m, NO FCF SCREEN: 10.25kg 0.1-0.2m, NO FCF RESIDUAL TEMORA VOLCANICS
			- - 3.5 _							-

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 319.0m

Date:	12/9/2	23						D	atum:	AHD
Plant	Type:	3T EXC	CAVA	TOR	Logg	ged/Checked by: A.D./M.D.				
Groundwater Record	ASS ASB SAL SAL OB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			-			FILL: Clayey silt, fine grained, brown, trace of quartz gravel, roots and root fibres.	M			GRASS COVER SCREEN: 10.96kg 0-0.1m, NO FCF SCREEN: 10.45kg 0.1-0.4m, NO FCF
			0.5 -		-	Silty CLAY: low to medium plasticity, brown and red brown, with fine to coarse grained andesite gravel, trace of sand, andesite cobbles, and root fibres. Extremely Weathered andesite: silty	w <pl XW</pl 			RESIDUAL TEMORA VOLCANICS
			- 1 -			SAND, fine to coarse grained, brown, with iron indurated bands. END OF TEST PIT AT 0.7m				- - -
			- - 1.5 –							-
			-	-						-
			2 -	-						- - -
			2.5 -	-						- -
			- - -							-
			3 -							-
			3.5							-

DPYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 316.3m

Date:	: 7/9/23	3						D	atum:	AHD
Plant	t Type:	3T EXC	CAVA	TOR	Logg	ged/Checked by: A.D./M.D.				
Groundwater Record	ASS ASB ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (KPa.)	Remarks
DRY ON COMPLE- TION			-			FILL: Silty clay, medium plasticity, brown, trace of sand, quartz gravel, roots and root fibres.	w≈PL			GRASS COVER SCREEN: 12.10kg 0-0.1m, NO FCF
			0.5 - -		CI-CH	Silty CLAY: medium to high plasticity, red brown, trace of quartz and ironstone gravel, roots and root fibres.	w≈PL			SCREEN: 11.78kg 0.1-0.3m, NO FCF RESIDUAL PVC IRRIGATION PIPE AT 0.3m
			-			END OF TEST PIT AT 0.8m				-
			1 - - - - 1.5							
			2 - - -							- - - -
			2.5 - - - -							- - - -
			3 - - - -	-						- - - -
·			3.5							

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 318.9m

Date: 11	/9/23					D	atum:	AHD
Plant Typ	oe: 3T EXC	CAVATOR	R Log	ged/Checked by: A.D./M.D.				
Groundwater Record ES ASB SAMP ES		Depth (m)	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION		0.5	CI-CH	FILL: Clayey silt, fine grained, brown, with root fibres, trace of quartz gravel. FILL: Silty clay, medium to high plasticity, brown, trace of sand, quartz and andesite gravel, roots and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of sand, andesite gravel, roots and root fibres.	M w≈PL w≈PL			GRASS COVER SCREEN: 10.26kg 0-0.1m, NO FCF SCREEN: 10.81kg 0.1-0.3m, NO FCF RESIDUAL
				END OF TEST PIT AT 0.8m				
		1.5 -						-
		2.5 -						- - - - - - -
		3.5						

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 317.0m

Date: 8/9/23 **Datum:** AHD

	le. 0/3/20							_	atuiii.	,
Pla	nt Type:	3T EXC	CAVA	ΓOR	Log	ged/Checked by: A.D./M.D.				
Groundwater Record	ES ASS ASB SAL DR	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY (COMP TIOI	DN E		0.5 -		СІ-СН	FILL: Silty sand, fine to medium grained, brown, with root fibres, trace of igneous and quartz gravel. FILL: Silty clayey sand, fine to coarse grained, grey, trace of igneous gravel and cobbles, ironstone gravel, roots and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of quartz gravel, roots and root fibres.	D D			GRASS COVER SCREEN: 10.23kg 0-0.05m, NO FCF SCREEN: 12.20kg 0.05-0.55m, NO FCF RESIDUAL
			1.5 -			END OF TEST PIT AT 1.1m				- - -
			2 -							- - - -
			2.5 - - -							- - - -
			3 - - - - 3.5							- - - -

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 315.8m

Date: 8/9	9/23						D	atum:	AHD
Plant Ty	pe : 3T	EXCAVA	TOR	Logg	ged/Checked by: A.D./M.D.				
Groundwater Record ES ASS CAMPLES			Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION		0		CI-CH	FILL: Silty gravelly clay, low to medium plasticity, brown, fine to coarse grained quartz gravel, trace of sand, igneous gravel and root fibres./Silty CLAY: medium to high plasticity, red brown, trace of quartz and ironstone gravel, roots and root fibres.	w <pl< td=""><td></td><td></td><td>GRASS/LEAF LITTER COVER SCREEN: 11.26kg - 0-0.1m, NO FCF SCREEN: 11.85kg 0.1-0.2m, NO FCF RESIDUAL</td></pl<>			GRASS/LEAF LITTER COVER SCREEN: 11.26kg - 0-0.1m, NO FCF SCREEN: 11.85kg 0.1-0.2m, NO FCF RESIDUAL
					END OF TEST PIT AT 0.8m				_
		1.5 -							- - - - - - - - -
		3 - - - - - - - 3.5							- - - -

PYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 317.2m

D 1 7/2/22	Datum: AHD				
Date: 7/9/23		Datum: AHD			
Plant Type: 3T EXCAVATOR	Logged/Checked by: A.D./M.D.				
Groundwater Record ES ASS ASS SAL DB Field Tests Graphic Log	Unified Classification MOITHINDSED NO	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)			
DRY ON COMPLE-TION	CI medium plasticity, brown and red brown, fine to coarse grained igneous gravel, trace of sand, ironstone gravel, and root fibres. Silty CLAY: medium plasticity, red	w <pl 0-0.05m,="" 10.27kg="" fcf="" no="" residual<="" screen:="" th=""></pl>			
0.5 -	brown, with fine to coarse grained ironstone gravel, trace of sand and root fibres. END OF TEST PIT AT 0.4m	REFUSAL ON - INFERRED - BEDROCK -			
1-					
1.5 —		-			
2-		-			
2.5 -		-			
3-		-			
		-			

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 317.7m

Date: 8/9/23		Datum: AHD					
Plant Type: 3T EXCAVAT	OR Logged/Checked by: A.I	D./M.D.					
Groundwater Record ES ASS ASS SAL DB Field Tests Depth (m)	Graphic Log Unified Classification NOITES	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)	Remarks				
DRY ON COMPLETION 0 0 0 0 1 1 1	FILL: Clayey silt, fine grain with fine to coarse grained gravel, trace of quartz grav fibres. FILL: Clayey silt, fine grain brown, trace of root fibres. FILL: Silty sandy clay, low plasticity, grey, red brown fine to medium grained sar ceramic fragments, ash, ro root fibres. CI-CH Silty CLAY: medium to high red brown, trace of sand, of andesite gravel, roots and	ed, brown, M quartz rel and root ed, light to medium and brown, nd, trace of ots and n plasticity, w≈PL quartz and	GRASS COVER SCREEN: 10.83kg 0-0.1m, NO FCF PLASTIC SHEET AT 0.1m DEPTH SCREEN: 10.39kg 0.1-0.4m, NO FCF SCREEN: 12.17kg 0.4-0.8m, NO FCF RESIDUAL				
1.5 – 2 – 2 – 3 – 3 – 3 – 3 –	END OF TEST PIT AT 1.4						

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 316.4m

SCREEN: 10.49kg 0.4-0.5m, NO FCF REWORKED NATURAL CONCRETE PIPE AT 0.5m DEPTH TEST PIT TERMINATED DUE TO SERVICES 1.5		Date:	8/9/23	3						D	atum:	AHD
DRY ON COMPLETION TICK TI	L	Plant 1	Гуре:	3T EXC	CAVA	ΓOR	Logg	ged/Checked by: A.D./M.D.				
DRY ON COMPLE TION I		Groundwater Record ES		Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
		DRY ON COMPLE-		H	0			trace of igneous and quartz gravel, glass fragments, roots and root fibres. FILL: Silty clay, medium to high plasticity, red brown, trace of igneous and quartz gravel, roots and root fibres.	D			GRASS COVER SCREEN: 10.06kg 0-0.1m, NO FCF SCREEN: 10.35kg 0.1-0.4m, NO FCF PVC IRRIGATION PIPE AT 0.3m DEPTH SCREEN: 10.49kg 0.4-0.5m, NO FCF REWORKED NATURAL CONCRETE PIPE AT 0.5m DEPTH TEST PIT TERMINATED DUE

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 315.2m

Datum: AHD

Date: 8/9/23					D	atum:	AHD
Plant Type: 3T EXC	CAVATOR	Logg	ed/Checked by: A.D./M.D.				
Groundwater Record ES ASS ASS SAL DB Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE TION SAL	0.5	CI-CT Class	FILL: Silty clay, medium plasticity, brown, trace of sand, igneous and quartz gravel, plastic fragments and root fibres. FILL: Silty sand, fine to medium grained, brown, with fine to coarse grained igneous gravel, trace of quartz gravel, roots and root fibres. FILL: Silty clay, low to medium plasticity, brown, trace of sand, quartz gravel and cobbles, ironstone gravel, concrete fragments, roots and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of quartz gravel and root fibres. END OF TEST PIT AT 1.1m	w <pl M w<pl< td=""><td>Stren Stren Rei. I</td><td>Hand Pener P</td><td>GRASS COVER SCREEN: 11.21kg 0-0.1m, NO FCF SCREEN: 11.52kg 0.1-0.3m, NO FCF SCREEN: 10.81kg 0.3-0.6m, NO FCF RESIDUAL</td></pl<></pl 	Stren Stren Rei. I	Hand Pener P	GRASS COVER SCREEN: 11.21kg 0-0.1m, NO FCF SCREEN: 11.52kg 0.1-0.3m, NO FCF SCREEN: 10.81kg 0.3-0.6m, NO FCF RESIDUAL
	3.5						- - -

)PYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 314.3m

Date: 8	3/9/23	3						D	atum:	AHD
Plant Ty	ype:	3T EXC	CAVA	TOR	Logg	ged/Checked by: A.D./M.D.				
	ASB SAMPLES SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE			0 -			FILL: Silty clay, medium to high plasticity, red brown and brown, trace	w <pl< td=""><td></td><td></td><td>GRASS COVER</td></pl<>			GRASS COVER
TION			0.5 -		CI-CH	of quartz gravel and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of quartz gravel and cobbles, roots and root fibres.	w≈PL			SCREEN: 11.72kg 0-0.1m, NO FCF SCREEN: 10.40kg 0.1-0.2m, NO FCF RESIDUAL
	++					END OF TEST PIT AT 0.7m				
			1			END OF TEST PIT AT 0.7m				
			2.5							- - - - -

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 313.0m

	Data: 0/0/22				Datum: AHD					
Date	: 8/9/23	3						D	atum:	AHD
Plan	t Type:	3T EXC	CAVA	TOR	Logg	jed/Checked by: A.D./M.D.				
Groundwater Record	ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE TION			-			FILL: Silty clay, low to medium plasticity, brown and red brown, trace of quartz gravel and root fibres.	w <pl< td=""><td></td><td></td><td>GRASS COVER SCREEN: 11.85kg 0-0.1m, NO FCF SCREEN: 10.10kg</td></pl<>			GRASS COVER SCREEN: 11.85kg 0-0.1m, NO FCF SCREEN: 10.10kg
			- 0.5 – - -		CI-CH	Silty CLAY: medium to high plasticity, red brown, trace of sand, quartz gravel and cobbles, roots and root fibres.	w≈PL			0.1-0.35m, NO FCF RESIDUAL
				VX4		END OF TEST PIT AT 0.9m				,
			1							
			3.5 _							-

DPYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR	Method: TEST PIT	R.L. Surface: ≈ 314.6m
Date : 8/9/23		Datum: AHD
Plant Type: 3T EXCAVATO	OR Logged/Checked by: A.D./M.D.	
Groundwater Record ES ASS ASS SAL DB Field Tests Depth (m)	Graphic Log Unified Classification NOITHINDSAN	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)
To a wide with a property of the property of t	FILL: Silty clay, low to medium plasticity, brown and red brown, trace of andesite and quartz gravel, and root fibres. Extremely Weathered andesite: silty SAND, fine to coarse grained, grey brown. END OF TEST PIT AT 0.3m	W <pl 0-0.1m,="" 10.76kg="" <="" cover="" fcf="" grass="" no="" screen:="" td="" temora="" volcanics="" xw=""></pl>
3-		- - - - - -

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 315.8m

Date:	12/9/2	23			Datum: AHD					
Plant	Type:	3T EXC	CAVA	TOR	Logo	ged/Checked by: A.D./M.D.				
	ASS ASS ASB SAL SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			0		CI-CH	FILL: Silty sandy clay, low to medium plasticity, brown, fine to medium grained sand, trace of igneous and quartz gravel, asphalt fragments and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of sand, quartz and andesite gravel and root fibres.	w≈PL w≈PL			MULCH COVER SCREEN: 10.77kg 0-0.1m, NO FCF SCREEN: 10.11kg 0.1-0.3m, NO FCF CEMENT PIPE AT 0.3m DEPTH - SUSPECTED ACM
			1.5 - 2.5 - 3.5 - 3.5 -			END OF TEST PIT AT 0.7m				RESIDUAL RESIDUAL RESIDUAL

DPYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 316.7m

D-4-	Date: 12/9/23					Datum: AHD				
			<i></i>		_			ט	atum:	AHD
Plan	t Type:	3T EXC	CAVA	TOR	Logg	ged/Checked by: A.D./M.D.				
Groundwater Record	ASS ASB SAL SAL DR	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE TION	1		0 -			FILL: Gravelly clayey sand, fine to coarse grained, brown, trace of igneous and quartz gravel and asphalt	М			MULCH COVER SCREEN: 10.67kg
			- 0.5 - - -		CI-CH	fragments. Silty CLAY: medium to high plasticity, red brown, trace of quartz gravel and cobbles.	w≈PL			0-0.1m, NO FCF
						END OF TEST PIT AT 0.8m				
			1							
			3 3 - - - - 3.5							- - - -

DPYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** PUSHTUBE / **R.L. Surface:** \approx 317.6m

Date: 13/9	/23				SPIRAL AUGER		D	atum:	AHD
Plant Type	: EZIPR	OBE		Logo	ged/Checked by: A.D./M.D.				
Groundwater Record ES ASS SAMPLES SAI	DB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ONCOMPLE-		0	XXX	-	ASPHALT: 50mm.t FILL: Silty sand, fine to medium	M			SCREEN: 1.80kg
TION		-			grained, brown and red brown, trace of igneous gravel and asphalt fragments. FILL: Silty clay, low to medium plasticity, brown, with fine to medium grained sand, trace of igneous and	w <pl< td=""><td></td><td></td><td>0.05-0.2m, NO FCF SCREEN: 3.72kg - 0.2-0.5m, NO FCF</td></pl<>			0.05-0.2m, NO FCF SCREEN: 3.72kg - 0.2-0.5m, NO FCF
		0.5		CI	\quartz gravel. Silty CLAY: medium plasticity, red brown, trace of quartz and andesite gravel.	w <pl< td=""><td></td><td></td><td>RESIDUAL</td></pl<>			RESIDUAL
		1 — - -		•	Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands.	XW			TEMORA - VOLCANICS - -
		_	/						
		1.5			END OF BOREHOLE AT 1.4m				
		3.5							-

PYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 318.3m

Date: 8/9/23					D	atum:	AHD
Plant Type: 3T EXC	CAVATOR	Logge	ed/Checked by: A.D./M.D.				
Groundwater Record ES ASS ASS SAL DB Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0.5	Unif	FILL: Silty clay, medium to high plasticity, brown, trace of sandstone, quartz and igneous gravel, metal fragments, quartz cobbles and root fibres. END OF TEST PIT AT 0.35m	© Mois Con Laboratoria Noise Con Laborator	Stre Rei.	Han Pen Pen Pen Rea Rea Rea Rea Rea Rea Rea Rea Rea Rea	GRASS COVER SCREEN: 11.28kg 0-0.1m, NO FCF SCREEN: 10.29kg 0.1-0.25m, NO FCF COPPER PIPE AT 0.2m DEPTH TEST PIT TERMINATED DUE TO SERVICES
	3.5						-

DPYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: PUSH TUBE R.L. Surface: ≈ 318.9m

Date: 13/9/23		Datum: AHD						
Plant Type: EZIPROBE	Plant Type: EZIPROBE Logged/Checked by: A.D./M.D.							
Groundwater Record ESASAS SAMPLES SAL DB Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength Rel. Density Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLETION	-	ASPHALT: 30mm.t FILL: Silty clay, low to medium plasticity, brown and grey, with fine to medium grained sand, trace of quartz	w <pl< td=""><td></td><td>SCREEN: 1.90kg 0.03-0.3m, NO FCF</td></pl<>		SCREEN: 1.90kg 0.03-0.3m, NO FCF			
0.5	CI	and siltstone gravel. Silty CLAY: medium plasticity, red brown, trace of sand and quartz gravel.	w <pl< td=""><td></td><td>RESIDUAL - -</td></pl<>		RESIDUAL - -			
	V V V -	Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands.	XW		TEMORA - VOLCANICS -			
	V V V	END OF BOREHOLE AT 1.0m			REFUSAL			
2.5								
3.5	-				-			

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: PUSH TUBE / R.L. Surface: ≈ 318.9m

Date: 13/9/23	SPIRAL AUGER	Datum: AHD
Plant Type: EZIPROBE	Logged/Checked by: A.D./M.D.	
Groundwater Record ES ASB SAMPLES SAL DB Field Tests Craphic Log	Classification Classification OUTPUT	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.) 83
DRY ON COMPLE-	ASPHALT: 40mm.t	w <pl 1.45kg<="" _="" screen:="" td=""></pl>
TION 0.5	FILL: Silty sandy clay, low to medium plasticity, red brown and brown, fine to medium grained sand, trace of quartz, igneous and andesite gravel, and asphalt fragments. Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands. END OF BOREHOLE AT 0.6m	XW TEMORA - VOLCANICS - REFUSAL
		-
1 -		_
		-
		-
1.5 —		-
		-
		-
2 –		-
		-
		-
2.5 —		-
		[[
3.5		
· · · · · · · · · · · · · · · · · · ·		

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 319.2m

Date: 11/9/23		Datum: AHD					
Plant Type: 3T E	EXCAVATOR	Log	ged/Checked by: A.D./M.D.				
Groundwater Record ES ASB SAMPLES SAL Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE	0		FILL: Clayey silt, fine grained, brown, trace of root fibres.	D			GRASS COVER
TION	0.5	× × × × ×	as above, but grey. FILL: Silty sandy clay, low to medium plasticity, light brown, fine to medium grained sand, trace of igneous gravel	D w <pl< td=""><td></td><td>-</td><td>SCREEN: 10.52kg 0-0.15m, NO FCF SCREEN: 10.72kg 0.15-0.3m, NO FCF SCREEN: 10.70kg 0.3-0.5m, NO FCF</td></pl<>		-	SCREEN: 10.52kg 0-0.15m, NO FCF SCREEN: 10.72kg 0.15-0.3m, NO FCF SCREEN: 10.70kg 0.3-0.5m, NO FCF
	· · · · · · · · · · · · · · · · · · ·	· -	and root fibres. Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands.	XW			TEMORA VOLCANICS
	2-5-3-5-3-5-3-5-3-5-3-5-3-5-5-3-5-5-5-5-		END OF TEST PIT AT 0.8m				

Environmental logs are not to be used for geotechnical purposes

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 320.0m

Date: 11/9/23		Datum: AHD					
Plant Type: 3T EX	CAVATOR	Logg	ed/Checked by: A.D./M.D.				
Groundwater Record ES ASS ASS SAMPLES SAL DB	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0	CI-CH	FILL: Silty clay, medium to high plasticity, brown and red brown, trace of andesite and igneous gravel, roots and root fibres. Silty CLAY: medium to high plasticity, red brown, trace of andesite gravel and cobbles, roots and root fibres.	w <pl w<pl< td=""><td></td><td></td><td>GRASS COVER SCREEN: 10.41kg 0-0.1m, NO FCF RESIDUAL TEMORA</td></pl<></pl 			GRASS COVER SCREEN: 10.41kg 0-0.1m, NO FCF RESIDUAL TEMORA
	0.5 -	V	Extremely Weathered andesite: silty SAND, fine to coarse grained, brown, with iron indurated bands. END OF TEST PIT AT 0.7m				- VOLCANICS -
			END OF TESTTIF AT 0.7III				-
	1 -						-
	1.5 —						- - -
	2-						- - -
	-						-
	2.5 -						- - -
	3-						_
							- - -
	3.5						

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR **Method:** TEST PIT **R.L. Surface:** \approx 318.6m

Date: 11/9/23	Datum: AHD				
Plant Type: 3T EXCAVATOR	Logged/Checked by: A.D./M.D.				
Groundwater Record ES ASS ASS SAL Depth (m)	Unified Classification DESCRIPTION NOITPINDESE	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)			
DRY ON COMPLE-TION	FILL: Silty clay, medium to high plasticity, brown, trace of sand, quartz, igneous and andesite gravel, ceramic fragments, roots and root fibres.	W <pl 0-0.1m,="" 0.1-0.4m,="" 10.32kg="" 10.72kg="" cover="" fcf="" grass="" no="" screen:="" td="" ="" <=""></pl>			
0.5	CI-CH Silty CLAY: medium to high plasticity, red brown, trace of andesite gravel, roots and root fibres.	w <pl residual<="" td=""></pl>			
	END OF BOREHOLE AT 0.9m				
1- - - 1.5- 2- 2- - - - - - - - - - - - - - - - -					
3.5					

DPYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: **HEALTH INFRASTRUCTURE**

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: PUSH TUBE / R.L. Surface: ≈ 318.2m

SPIRAL AUGER A I ID

Date	: 13/9/2	23				SPIRAL AUGER		D	atum:	AHD
Plan	t Type:	EZIPRO	OBE		Logg	ged/Checked by: A.D./M.D.				
	ES ASS ASB SAL SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE TION			0		-	ASPHALT: 40mm.t FILL: Silty clay, low to medium plasticity, brown, with fine to medium grained sand, trace of igneous grave/. FILL: Silty sandy clay, medium plasticity, yellow brown and red brown, fine to medium grained sand, trace of andesite and ironstone gravel.	w <pl w<pl< td=""><td></td><td></td><td>SCREEN: 1.10kg 0.04-0.2m, NO FCF SCREEN: 5.70kg 0.2-0.6m, NO FCF</td></pl<></pl 			SCREEN: 1.10kg 0.04-0.2m, NO FCF SCREEN: 5.70kg 0.2-0.6m, NO FCF
			- - 1- -		CI-CH	Silty CLAY: medium to high plasticity, red brown, trace of sand.	w <pl< td=""><td></td><td></td><td>RESIDUAL</td></pl<>			RESIDUAL
			1.5			END OF BOREHOLE AT 1.4m				
			3- 3- - - - - 3.5_							- - - -

Environmental logs are not to be used for geotechnical purposes

Client: HEALTH INFRASTRUCTURE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: TEMORA HOSPITAL, 169-189 LOFTUS STREET, TEMORA, NSW

Job No.: E35822PR Method: TEST PIT R.L. Surface: ≈ 311.7m

Date: 8/9/23	Date: 8/9/23 Datum: AHD					
Plant Type: 3T EXCAVATOR	Logged/Checked by: A.D./M.D.					
Groundwater Record ES ASB ASB SAMPLES SAL Depth (m) Graphic Log	Unified Classification MOITHER Classification MOITHER CLASSIFICATION	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLE	FILL: Silty clay, low to medium plasticity, brown and red brown, trace	w <pl< td=""><td>GRASS COVER</td></pl<>	GRASS COVER			
TION 0.5 -	of quartz gravel, roots and root fibres. CL-CI Silty CLAY: low to medium plasticity, red brown, trace of quartz gravel, roots and root fibres.	w <pl< td=""><td>SCREEN: 11.30kg 0-0.1m, NO FCF SCREEN: 10.29kg 0.1-0.2m, NO FCF RESIDUAL</td></pl<>	SCREEN: 11.30kg 0-0.1m, NO FCF SCREEN: 10.29kg 0.1-0.2m, NO FCF RESIDUAL			
	END OF TEST PIT AT 0.75m		-			
1.5 - 2.5 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	END OF TEST FIT AT 0.75III					
3.5			-			

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties—soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	>50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)		
Very Soft (VS)	≤ 25	≤ 12		
Soft (S)	> 25 and ≤ 50	> 12 and ≤ 25		
Firm (F)	> 50 and ≤ 100	> 25 and ≤ 50		
Stiff (St)	> 100 and ≤ 200	> 50 and ≤ 100		
Very Stiff (VSt)	> 200 and ≤ 400	> 100 and ≤ 200		
Hard (Hd)	> 400	> 200		
Friable (Fr)	Strength not attainable – soil crumbles			

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

1

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

> N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'Nc' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

SYMBOL LEGENDS

SOIL ROCK FILL CONGLOMERATE TOPSOIL SANDSTONE CLAY (CL, CI, CH) SHALE/MUDSTONE SILT (ML, MH) SILTSTONE SAND (SP, SW) CLAYSTONE GRAVEL (GP, GW) COAL SANDY CLAY (CL, CI, CH) LAMINITE SILTY CLAY (CL, CI, CH) LIMESTONE CLAYEY SAND (SC) PHYLLITE, SCHIST SILTY SAND (SM) TUFF GRAVELLY CLAY (CL, CI, CH) GRANITE, GABBRO CLAYEY GRAVEL (GC) DOLERITE, DIORITE SANDY SILT (ML, MH) BASALT, ANDESITE 77 77 77 7 77 77 77 77 77 QUARTZITE PEAT AND HIGHLY ORGANIC SOILS (Pt)

OTHER MATERIALS

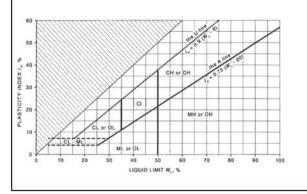
CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	ajor Divisions	Group Symbol	Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>
carse grained soil (more than 69% of soil excluding oversize fraction is greater than 0.075mm)	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤5% fines	Fails to comply with above
uding ove		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
ofsailexdu 10.075mm)		GC Gravel-clay mixtures and gravel-sand-clay mixtures 'Dirty' materials with excess of plastic fines, medium to high dry strength		≥ 12% fines, fines are clayey	Fines behave as clay	
rethan 65%c greater than	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u > 6 1 < C _c < 3
ioi (more	of coarse fraction is smaller than	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
graineds	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coars		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

		Group			Laboratory Classification		
Majo	or Divisions	Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
duding m)	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
ainedsoils (more than 35% of soil excl oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
an 35% ssthan		OL	Organic silt	Low to medium	Slow	Low	Below A line
orethic on is le	SILT and CLAY	МН	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
soils (m e fracti	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
ine grained soils (more than 35% of soil e oversize fraction is less than 0.075 m		OH	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria

A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:


$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

Modified Casagrande Chart for Classifying Silts and Clays according to their Behaviour

LOG SYMBOLS

Estent of borehole/test pit collapse shortly after drilling/excavation. Groundwater seepage into borehole or test pit noted during drilling or excavation. By Sample taken over depth indicated, for environmental analysis. Undisturbed Somm diameter tube sample taken over depth indicated. By Bulk disturbed sample taken over depth indicated. ASB ASS Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis. SAL Soil sample taken over depth indicated, for asbestos analysis	Log Column	Symbol	Definition					
Groundwater seepage into borehole or test pit noted during drilling or excavation. Samples ES Sample taken over depth indicated, for environmental analysis. Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. ASB Soli sample taken over depth indicated, for analysis. ASS Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated, for advantage soli analysis. Soli sample taken over depth indicated. for advantage soli analysis. Soli sample taken over depth indicated. Net analysis of Per- and Polyflouroalky Substances. Net analysis of Per- and Polyflouroalky Substances. Net analysis of Per- and Polyflouroalky Substances. Field Tests N=17 YNS = 25 YNS = 25 YNS = 35 Solid Cone Penetration Test (SPT) performed between d	Groundwater Record		Standing water level.	Standing water level. Time delay following completion of drilling/excavation may be shown.				
Samples		c	Extent of borehole/test pit collapse shortly after drilling/excavation.					
Uso Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. Soll sample taken over depth indicated. ASB Soll sample taken over depth indicated, for asbestos analysis. Soll sample taken over depth indicated, for acid sulfate soil analysis. Soll sample taken over depth indicated, for analysis of Per- and Polyfluoroally/ Substances. Field Tests N = 17 4, 7, 10 Standard Penetration Test (SPT) performed between depths indicated by lines. Individ figures show blows per 150mm penetration. Refusal refers to apparent hammer refusal with the corresponding 150mm depth increment. N _t = 5 7 38 VNS = 25 VNS = 25 Vane shear reading in kPa of undrained shear strength. Photoionisation detector reading in ppm (soil sample headspace test). Moisture Condition (Fine Grained Soils) W > PL W = LL W > LL W > LL Moisture content estimated to be greater than plastic limit. Moisture content estimated to be least han plastic limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be mear liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture co		•	Groundwater seepag					
DB Bulk disturbed sample taken over depth indicated.	Samples		*					
DS Small disturbed bag sample taken over depth indicated.								
ASB ASS Soil sample taken over depth indicated, for asbestos analysis. Soil sample taken over depth indicated, for acid sulfate soil analysis. Soil sample taken over depth indicated, for analysis of Per- and Polyfluoroalkyl Substances. Field Tests N = 17 4, 7, 10 N_ = 2 5								
Soil sample taken over depth indicated, for acid sulfate soil analysis. SAL Soil sample taken over depth indicated, for acid sulfate soil analysis. Soil sample taken over depth indicated, for salinity analysis. Soil sample taken over depth indicated, for analysis of Per- and Polyfluoroallyl Substances. Soil sample taken over depth indicated, for analysis of Per- and Polyfluoroallyl Substances. Soil de Cone Penetration Test (SPT) performed between depths indicated by lines. Individing figures show blows per 150mm penetration Refusal' refers to apparent hammer refusal with the corresponding 150mm depth increment. N _t =			_					
SAL PFAS Soil sample taken over depth indicated, for salinity analysis.			*					
PFAS Soil sample taken over depth indicated, for analysis of Per- and Polyfluoroalkyl Substances.			· ·					
Field Tests N = 17								
A		PFAS	Soil sample taken over	er depth indicated, for analys	sis of Per- and Polyfluoroalkyl Substances.			
Targer show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refet to apparent hammer refusal within the corresponding 150mm depth increment. VNS = 25	Field Tests		figures show blows p	er 150mm penetration. 'Refu				
PID = 100 Photoionisation detector reading in ppm (soil sample headspace test).		7	figures show blows p	figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' ref				
PID = 100 Photoionisation detector reading in ppm (soil sample headspace test).		VNS = 25	Vane shear reading i	Vane shear reading in kPa of undrained shear strength.				
Fine Grained Soils w ≈ PL Woisture content estimated to be approximately equal to plastic limit. w < PL W ≈ LL W ≈ LL W ≈ LL W ≈ LL W ≈ LL W ≈ LL W ≈ LL W ≈ LL W ≈ LL W ≈ LL W ≈ LL Moisture content estimated to be less than plastic limit. Moisture content estimated to be wet of liquid limit. Moisture content estimated to be wet of liquid limit. Moisture content estimated to be wet of liquid limit. Moisture content estimated to be wet of liquid limit. Moisture content estimated to be wet of liquid limit. Moisture content estimated to be wet of liquid limit. Moisture content estimated to be wet of liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be eapproximately elimit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be vet of liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be wet of liquid limit. Moisture content estimated to be wet of liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be vet of liquid limit. Moisture content estimated to be vet of liquid limit. Moisture content estimated to be vet of liquid limit. Moisture content estimated to be vet of liquid limit. Moisture content estimat			_					
(Fine Grained Soils) w ≈ PL W Moisture content estimated to be approximately equal to plastic limit. W ≈ LL W ≈ LL W ≈ LL W ≈ LL W ≥ LL W ≥ LL W ≥ LL W ≥ LL W > LL W ≥ LL W	Moisture Condition	w > PL	Moisture content est	imated to be greater than p	lastic limit.			
W < PL W ≈ LL W ≈ LL W ≈ LL W ≈ LL W ≈ LL W ≈ LL W ≈ LL W ≈ LL W ≈ LL Moisture content estimated to be near liquid limit. Moisture content estimated to be wet of liquid limit. Moisture content estimated to be wet of liquid limit.		w≈ PL						
W > LL Moisture content estimated to be wet of liquid limit.		w < PL	Moisture content estimated to be less than plastic limit.					
Coarse Grained Soils D		w≈LL	Moisture content estimated to be near liquid limit.					
M MOIST — does not run freely but no free water visible on soil surface. WET — free water visible on soil surface. VERY SOFT — unconfined compressive strength ≤ 25kPa. SOFT — unconfined compressive strength > 25kPa and ≤ 50kPa. F FIRM — unconfined compressive strength > 50kPa and ≤ 100kPa. St STIFF — unconfined compressive strength > 100kPa and ≤ 200kPa. VSt VERY STIFF — unconfined compressive strength > 200kPa and ≤ 400kPa. Hd HARD — unconfined compressive strength > 400kPa. Fr FRIABLE — strength not attainable, soil crumbles. () Bracketed symbol indicates estimated consistency based on tactile examination or oth assessment. Density Index/ Relative Density (Cohesionless Soils) VL VERY LOOSE ≤ 15 0 − 4 L LOOSE > 15 and ≤ 35 4 − 10 MD MEDIUM DENSE > 35 and ≤ 65 10 − 30 D DENSE > 65 and ≤ 85 30 − 50 VD VERY DENSE > 85 > 50		w > LL	Moisture content estimated to be wet of liquid limit.					
W WET — free water visible on soil surface. Strength (Consistency) VS VERY SOFT — unconfined compressive strength ≤ 25kPa. Cohesive Soils S SOFT — unconfined compressive strength > 25kPa and ≤ 50kPa. F FIRM — unconfined compressive strength > 50kPa and ≤ 100kPa. St STIFF — unconfined compressive strength > 100kPa and ≤ 200kPa. VSt VERY STIFF — unconfined compressive strength > 200kPa and ≤ 400kPa. Hd HARD — unconfined compressive strength > 400kPa. Fr FRIABLE — strength not attainable, soil crumbles. () Bracketed symbol indicates estimated consistency based on tactile examination or oth assessment. Density Index/Relative Density Range (%) SPT 'N' Value Range (Blows/300mm) (Cohesionless Soils) VL VERY LOOSE ≤ 15 0 – 4 L LOOSE > 15 and ≤ 35 4 – 10 MD MEDIUM DENSE > 35 and ≤ 65 10 – 30 D DENSE > 65 and ≤ 85 30 – 50 VD VERY DENSE > 85 > 50	(Coarse Grained Soils)	D	DRY – runs freely through fingers.					
Strength (Consistency) Cohesive Soils VERY SOFT — unconfined compressive strength ≤ 25kPa. SOFT — unconfined compressive strength > 25kPa and ≤ 50kPa. F FIRM — unconfined compressive strength > 50kPa and ≤ 100kPa. St STIFF — unconfined compressive strength > 100kPa and ≤ 200kPa. VSt VERY STIFF — unconfined compressive strength > 200kPa and ≤ 400kPa. Hd HARD — unconfined compressive strength > 400kPa. Fr FRIABLE — strength not attainable, soil crumbles. () Bracketed symbol indicates estimated consistency based on tactile examination or oth assessment. Density Index (I₀) SPT 'N' Value Range (Blows/300mm) (Cohesionless Soils) VL VERY LOOSE ≤ 15 0 − 4 L LOOSE > 15 and ≤ 35 4 − 10 MD MEDIUM DENSE > 35 and ≤ 65 10 − 30 D DENSE > 65 and ≤ 85 30 − 50 VD VERY DENSE > 85 > 50		М						
Cohesive Soils S SOFT — unconfined compressive strength > 25kPa and ≤ 50kPa. F FIRM — unconfined compressive strength > 50kPa and ≤ 100kPa. St STIFF — unconfined compressive strength > 100kPa and ≤ 200kPa. VSt VERY STIFF — unconfined compressive strength > 200kPa and ≤ 400kPa. Hd HARD — unconfined compressive strength > 400kPa. Fr FRIABLE — strength not attainable, soil crumbles. () Bracketed symbol indicates estimated consistency based on tactile examination or oth assessment. Density Index/ Relative Density (Cohesionless Soils) VL VERY LOOSE ≤ 15 0 − 4 L LOOSE > 15 and ≤ 35 4 − 10 MD MEDIUM DENSE > 35 and ≤ 65 10 − 30 D DENSE > 65 and ≤ 85 30 − 50 VD VERY DENSE > 85 > 50		W	WET – free water visible on soil surface.					
Soft — unconfined compressive strength > 25kPa and ≤ 50kPa. FIRM — unconfined compressive strength > 50kPa and ≤ 100kPa. St STIFF — unconfined compressive strength > 100kPa and ≤ 200kPa. VSt VERY STIFF — unconfined compressive strength > 200kPa and ≤ 400kPa. Hd HARD — unconfined compressive strength > 400kPa. Fr FRIABLE — strength not attainable, soil crumbles. () Bracketed symbol indicates estimated consistency based on tactile examination or oth assessment. Density Index/ Relative Density (Cohesionless Soils) VL VERY LOOSE ≤ 15 0 − 4 L LOOSE > 15 and ≤ 35 4 − 10 MD MEDIUM DENSE > 35 and ≤ 65 10 − 30 D DENSE > 65 and ≤ 85 30 − 50 VD VERY DENSE > 85 > 50	Strength (Consistency)	VS	VERY SOFT — un	confined compressive streng	th ≤ 25kPa.			
St STIFF — unconfined compressive strength > 100kPa and ≤ 200kPa. VSt VERY STIFF — unconfined compressive strength > 200kPa and ≤ 400kPa. Hd HARD — unconfined compressive strength > 400kPa. Fr FRIABLE — strength not attainable, soil crumbles. Bracketed symbol indicates estimated consistency based on tactile examination or oth assessment. Density Index/ Relative Density (Cohesionless Soils) VL VERY LOOSE ≤ 15 0 - 4 L LOOSE > 15 and ≤ 35 4 - 10 MD MEDIUM DENSE > 35 and ≤ 65 10 - 30 D DENSE > 65 and ≤ 85 30 - 50 VD VERY DENSE > 85 > 50	Cohesive Soils	S	SOFT – un	confined compressive streng	gth > 25kPa and ≤ 50kPa.			
St		F	,					
VSt		St	, -					
Hd HARD — unconfined compressive strength > 400kPa. Fr FRIABLE — strength not attainable, soil crumbles. Bracketed symbol indicates estimated consistency based on tactile examination or oth assessment. Density Index/ Relative Density (Cohesionless Soils) VL VERY LOOSE ≤ 15 0-4 L LOOSE > 15 and ≤ 35 4-10 MD MEDIUM DENSE > 35 and ≤ 65 10-30 D DENSE > 65 and ≤ 85 30-50 VD VERY DENSE > 85 > 50		VSt						
Fr () Bracketed symbol indicates estimated consistency based on tactile examination or oth assessment. Density Index/ Relative Density (Cohesionless Soils) VL VERY LOOSE ≤ 15 0-4 L LOOSE > 15 and ≤ 35 4-10 MD MEDIUM DENSE > 35 and ≤ 65 10-30 D DENSE > 65 and ≤ 85 30-50 VD VERY DENSE > 85 > 50		Hd	, -					
Bracketed symbol indicates estimated consistency based on tactile examination or oth assessment. Density Index/ Relative Density (Cohesionless Soils) VL VERY LOOSE ≤ 15 0 - 4 L LOOSE > 15 and ≤ 35 4 - 10 MD MEDIUM DENSE > 35 and ≤ 65 10 - 30 D DENSE > 65 and ≤ 85 30 - 50 VD VERY DENSE > 85 > 50		Fr						
Relative Density (Cohesionless Soils) VL VERY LOOSE ≤ 15 0 - 4 L LOOSE > 15 and ≤ 35 4 - 10 MD MEDIUM DENSE > 35 and ≤ 65 10 - 30 D DENSE > 65 and ≤ 85 30 - 50 VD VERY DENSE > 85 > 50		()	Bracketed symbol in	Bracketed symbol indicates estimated consistency based on tactile examination or other assessment.				
(Cohesionless Soils) VL VERY LOOSE ≤ 15 0 - 4 L LOOSE > 15 and ≤ 35 4 - 10 MD MEDIUM DENSE > 35 and ≤ 65 10 - 30 D DENSE > 65 and ≤ 85 30 - 50 VD VERY DENSE > 85 > 50				•				
MD MEDIUM DENSE > 35 and ≤ 65 10 − 30 D DENSE > 65 and ≤ 85 30 − 50 VD VERY DENSE > 85 > 50	(Cohesionless Soils)	VL	VERY LOOSE		0-4			
D DENSE > 65 and ≤ 85 30 − 50 VD VERY DENSE > 85 > 50		L	LOOSE	> 15 and ≤ 35	4-10			
VD VERY DENSE >85 >50		MD	MEDIUM DENSE	> 35 and ≤ 65	10 – 30			
VD VERY DENSE > 85 > 50		D	DENSE	> 65 and ≤ 85	30 – 50			
		VD		> 85				
() Bracketed symbol indicates estimated density based on ease of drilling or other assessment		()						

Log Column	Symbol	Definition				
Hand Penetrometer Readings	300 250	Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.				
Remarks	'V' bit	Hardened steel	'V' shaped bit.			
	'TC' bit	Twin pronged tungsten carbide bit.				
	T ₆₀		Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers.			
	Soil Origin	The geological o	The geological origin of the soil can generally be described as:			
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 			
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 			
		ALLUVIAL	– soil deposited by creeks and rivers.			
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 			
		MARINE	 soil deposited in a marine environment. 			
		AEOLIAN	 soil carried and deposited by wind. 			
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 			
		LITTORAL	– beach deposited soil.			

Classification of Material Weathering

Term		Abbreviation		Definition		
Residual Soil		RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.		
Extremely Weathered		xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.		
Highly Weathered	Distinctly Weathered	HW	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.		
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.		
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.		
Fresh		FR		Rock shows no sign of decomposition of individual minerals or colour changes.		

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

			Guide to Strength			
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment		
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.		
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.		
Medium Strength	M	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.		
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.		
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.		
Extremely High Strength	EH	> 200	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.		

Appendix D: Example Imported Materials and Waste Tracking Registers

Imported Materials Register							
Supplier	Date	Docket/Invoice #	Product Type	Quantity (specify m3 or tonnes)	Area where Material was Placed		

Exported (Waste) Materials Register								
Load	Date	Material Type / Classification	Site Area where Waste was Generated	Waste Classification Report Reference	Disposal Facility	Tipping Receipt/Docket Number	Tracking Number (where relevant)	Tonnage

Appendix E: Report Explanatory Notes

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)¹⁶ methods and those described in *Environmental Sampling and Analysis, A Practical Guide*, (1991)¹⁷. The NEPM (2013) is consistent with these documents.

A. Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: "The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).

B. Precision

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. Accuracy

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. Completeness

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;

¹⁶ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)

¹⁷ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. Comparability

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

G. Blanks

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. Matrix Spikes

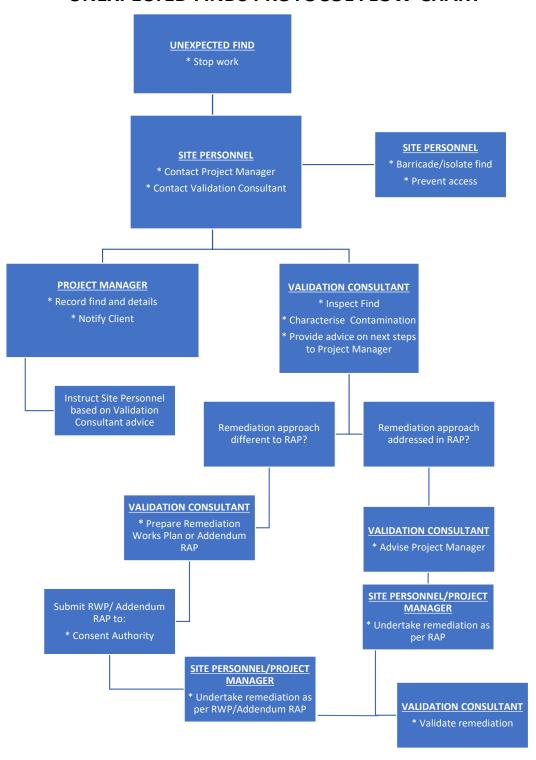
Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

I. Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>


Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

Appendix F: Unexpected Finds Protocol

UNEXPECTED FINDS PROTOCOL FLOW-CHART

Appendix G: Guidelines and Reference Documents

Contaminated Land Management Act 1997 (NSW)

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

NSW EPA, (2022). Sampling design part 1 - application, Contaminated Land Guidelines

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW)

Western Australia Department of Health, (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia